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Motivations

F Bees play a major role in the pollination of plants.

F Fear that the extinction of some bees species ends in a cascade of
exinction in bees and plants species.

F We consider a bipartite network of bee and plant species:

I fixed in time

I model population dynamics with interactions along the graph

Will a large complex system be stable? (R. May, 1972)
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Ecological stability by May (1972)
F Consider a graph with n vertices (species) and connectance

C =
|E |

n(n − 1)
.

F Assume that around the equilibrium:

N i
t = N̂ i + x it , with

dx i

dt
=

n∑
j=1

aijxj(t),

where

I aii = −1,

I aij = 0 if there is no edge between species i and j ,

I aij is an independent centered r.v. with variance s2, if i ∼ j .

F The system is stable if the eigenvalues of (aij) are negative.

May says that an equilibrium of the population is stable if and only if

s
√
nC < 1.
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Shapes of plant-pollinator graphs
F The networks are sometimes distinguished by nestedness and
connectance.

Fontaine, Guimaraes, Kéfi, ... Thébault (2011)
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Shapes of plant-pollinator graphs
F The networks are sometimes distinguished by nestedness and
connectance.

Knop, Zoller, Ryser, Gerpe, Hörler, Fontaine (2017)
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Model of pollinator and plant

F Structuration by degree of specialization of the species, x (plants)
or y (bees) in [0, 1].

F We have n populations of plants and m populations of pollinators.

Pn
t (dx) =

1

n

n∑
i=1

P i
tδx i (dx), Am

t (dy) =
1

m

m∑
j=1

Aj
tδy j (dy).

F Rescaling parameter K :

PK ,n
t (dx) =

n∑
i=1

1

nK
PK ,i
t δx i (dx), AK ,m

t (dy) =
m∑
j=1

1

mK
AK ,j
t δy j (dy).

→ Three parameters: K, n, m
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Modelling a bipartite graph

F Vertices: each pollinator and plant species.

F Edges: i ∼ j if the pollinator species j visits the plant species i .

d j
A and d i

P are the degrees of the species j and i .

F Graph: The bipartite graph G can be represented by an n ×m
adjacency matrix G n,m, with G n,m

ij = 1 if the pollinator specie j interacts
with the plant specie i , i.e. i ∼ j , and 0 otherwise.

F Bipartite Erdös-Rényi graphs: Each plant species i and pollinator
species j are connected with the probability φ(x i , y j) independently of the
other couples.

Examples: φ(x , y) = xy or φ(x , y) = ϕ(|x − y |).
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Interactions along the graph

F Growth rate=natural birth - natural death rates:

gP(r) =
αP r

βP + γP r
− (d3 + d4r), gA(r) =

αA r

βA + γA r
−
(
d1 +

d2

r

)
where r is the resources that a given species can obtain from its
interactions.

F cn,mij is a weight for the interaction i ∼ j :

R i,nm
t =

∑
j∼i

cn,mij Aj
tP

i
t .

F A death by competition for the bees:

m∑
`=1

H(y , y `)A`
t .
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Semi-martingales

F for a test function f :

〈PK ,n
t , f 〉 =

1

n

n∑
i=1

1

K
PK ,i
t f (xi )

=〈PK ,n
0 , f 〉+

∫ t

0

1

n

n∑
i=1

f (xi )g
P(RK ,i,nm

s

) 1

K
PK ,i
s ds +

n∑
i=1

f (xi )M
K ,n,i,f
t ,

F where MK ,n,i,f ’s are square integrable martingales with

〈MK ,i,f 〉t =
1

n2K

n∑
i=1

f 2(xi )

∫ t

0

(
bP(RK ,i,nm) + dP(RK ,i,nm)

) 1

K
PK ,i
s ds.
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Large lopulation limit
F Large population limit for n,m fixed.

dP i
t

dt
= gP

P i
t

∑
j∼i

cn,mij Aj
t

P i
t

dAj
t

dt
=

gA

Aj
t

∑
i∼j

cn,mij P i
t

− m∑
`=1

Hm(y j , y `)A`
t

Aj
t ,
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Large networks

F Erdös-Rényi graphs belong to the family of dense random graphs.

F When n,m→ +∞, the graph converge to the graphon
φ : [0, 1]2 7→ [0, 1]

Lefebvre, Villemant, Fontaine, Daugeron (2018)
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Graphon convergence
F For a ‘small’ motif F , let us define:

t(F ,G ) =
|inj(F ,G )|

(n)k
, (n)k = n(n − 1) · · · (n − k + 1) =

n!

k!

F The class F of isomorphism classes of finite graphs is denumberable
and we denote by (Fi )i∈N an enumeration.

F We define a distance between graphs by:

d(G ,G ′) =
∑
i∈N

2−i |t(Fi ,G )− t(Fi ,G
′)|.

F We can extend to the distance between G and a graphon φ with:

t(F , φ) =

∫
[0,1]k

∏
{i,j}∈E(F )

φ(xi , xj)dx1 . . . dxk .

Def: A sequence of graphs (Gn)n∈N convergences to the graphon φ if

lim
n→+∞

d(Gn, φ) = 0.
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Modelling the ressources

Recall:
R i,nm
t =

∑
j∼i

cn,mij Aj
tP

i
t .

F Hyp: it is possible to index the plant and pollinator species s.t. for all
n,m ∈ N∗, there exists a continuous (random) function
cn,m : [0, 1]2 7→ R, s.t.

∀i ∈ {1, . . . , n}, ∀j ∈ {1, . . . ,m}, cn,mij = cn,m
( i
n
,
j

m

)
.

Moreover, we suppose that there exists a (random) function
c : [0, 1]2 7→ R such that the sequence of functions cn,m(., .) converges
to c(., .), when n and m tend to +∞.

F Example: when the cn,mij depend on the degree of generalism:

cn,mij = ρ
(
x i , y j

)
= ρ
(
F−1
P,n

( i
n

)
,F−1

A,m

( j
n

))
.
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Cinetic averaging of the graph

F Th: Let us consider two independent sequences of i.i.d. random variables
(x i )i≥1, (y j)j≥1 on [0, 1], and good ICs. For n,m→ +∞, (Pn

t (dx),Am
t (dx))t≥0

converge in C(R+,M2
F ([0, 1])) to a process (P̄, Ā) in C(R+,M2

F ([0, 1])), such
that:

(i) for all t ≥ 0, P̄t and Āt admit densities p̄(x , t) and ā(y , t) with respect to
the Lebesgue measure on [0, 1],

(ii) (P̄, Ā) is the unique solution, for f ∈ C([0, 1],R), of∫ 1

0

f (x)dP̄t(x) =

∫ 1

0

f (x)dp̄0(x)dx

+

∫ t

0

∫ 1

0

f (x)gP
(
p̄(x , s)

∫ 1

0

ρ(x , y)φ(x , y)a(y , s)dy
)
p̄(x , s)dx ds,∫ 1

0

f (y)dĀt(y) =

∫ 1

0

f (y)dā0(y)dy

+

∫ t

0

∫ 1

0

f (y)
[
gA
(
ā(x , s)

∫ 1

0

ρ(x , y)φ(x , y)p̄(x , s)dx
)

−H ∗ ā(y , s)
]
ā(y , s)dy ds.
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Thank You


