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Motivations

* Bees play a major role in the pollination of plants.

Fear that the extinction of some bees species ends in a cascade of
exinction in bees and plants species.

* We consider a bipartite network of bee and plant species:

> fixed in time

» model population dynamics with interactions along the graph

Will a large complex system be stable? (R. May, 1972)



Ecological stability by May (1972)

% Consider a graph with n vertices (species) and connectance

3

C:m.

Assume that around the equilibrium:

i i i . dx’ .
Ny = N'+ x|, with i Zla,-jxj(t),
=

where

> a; = —1,

> a; = 0 if there is no edge between species i and J,

> a; is an independent centered r.v. with variance s, if i ~ j.
% The system is stable if the eigenvalues of (a;;) are negative.

May says that an equilibrium of the population is stable if and only if

svVnC < 1.



Shapes of plant-pollinator graphs

Y The networks are sometimes distinguished by nestedness and
connectance.
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Shapes of plant-pollinator graphs

# The networks are sometimes distinguished by nestedness and
connectance.
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Model of pollinator and plant

Structuration by degree of specialization of the species, x (plants)
or y (bees) in [0, 1].

% We have n populations of plants and m populations of pollinators.
P7(dx) Z Pis.i(dx),  AM(dy)= ZA 8, (dy).
% Rescaling parameter K:
n m

n i m 1 i
PL"(dx) =Y nKPK Su(dx),  AST(dy) = ZWAf’J(syj(dy).

i=1 j=1

— Three parameters: K, n, m



Modelling a bipartite graph

% Vertices: each pollinator and plant species.
* Edges: i/ ~ j if the pollinator species j visits the plant species /.

di‘ and d}, are the degrees of the species j and i.

% Graph: The bipartite graph G can be represented by an n x m
adjacency matrix G™™, with G,-;-”m = 1 if the pollinator specie j interacts
with the plant specie i, i.e. i ~ j, and 0 otherwise.



Modelling a bipartite graph

% Vertices: each pollinator and plant species.
* Edges: i/ ~ j if the pollinator species j visits the plant species /.

di‘ and d}, are the degrees of the species j and i.

% Graph: The bipartite graph G can be represented by an n x m
adjacency matrix G™™, with G,-;-”m = 1 if the pollinator specie j interacts
with the plant specie i, i.e. i ~ j, and 0 otherwise.

% Bipartite Erdos-Rényi graphs: Each plant species i and pollinator
species j are connected with the probability ¢(x’, y/) independently of the
other couples.

Examples: ¢(x,y) = xy or ¢(x,y) = o(|x — y|).



Interactions along the graph

Y Growth rate=natural birth - natural death rates:

ap r

- 5 OéAr _( d2)
 Bptapr

—d d 3 A = — d_’_i
(d3 + dar) g™(r) Batar 1 p

g"(r)

where r is the resources that a given species can obtain from its
interactions.

* c;" is a weight for the interaction i ~ j:

i,nm __ n,m aj pi
R =" AP,

j~i

A death by competition for the bees:

m
> H(y.y")A;.
=1



Semi-martingales

Y for a test function f:

n

K o 1 1 kg
(P ,f>—ni2:13KPt f(x)

n 1 iy 1 ki " iy
=(Pg"", f) +/ . Zf(x;)gP(RsK’ ' )?PSK ds + Z f(xi )M
¢ = i=1
where M*™f's are square integrable martingales with

. n t . . .
<MK,:,F>t _ # Z f2(x,-)/0 (bP(RK,I,nm) n dP(RK,I,nm)) %PSK,: ds.
i—1



Large lopulation limit

 Large population limit for n, m fixed.
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Large lopulation limit

 Large population limit for n, m fixed.
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Time evolution of the density of plants P} (left)
and pollinators Af (right) for different initial conditions
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Large networks

graphs belong to the family of dense random graphs.
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Graphon convergence
For a ‘small’ motif F, let us define:

t(F,G)—W, (M =nln—1) (0 —k+1)=

The class F of isomorphism classes of finite graphs is denumberable
and we denote by (F;);en an enumeration.

We define a distance between graphs by:

d(G, 6"y =3 27|t(F,, G) — t(F., G)|.

ieN
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Graphon convergence
For a ‘small’ motif F, let us define:
_ [ini(F. 6) _ _n
t(F,G)fW’ (n)k—n(n—1)~--(n—k+1)fﬂ
The class F of isomorphism classes of finite graphs is denumberable
and we denote by (F;);en an enumeration.

We define a distance between graphs by:

d(G, 6"y =3 27|t(F,, G) — t(F., G)|.

ieN

We can extend to the distance between G and a graphon ¢ with:

t(F, ) :/ H d(xi, x;)dxy . .. dx.

O (i jyee(r)
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Graphon convergence
For a ‘small’ motif F, let us define:
_ [ini(F. G) B o
t(F,G)fW’ (n)k—n(n—l)n-(n—k—kl)fH
The class F of isomorphism classes of finite graphs is denumberable
and we denote by (F;);en an enumeration.

We define a distance between graphs by:

d(G.G")=> 27|t(F;, G) - t(F:, G)|.
ieN
We can extend to the distance between G and a graphon ¢ with:
t(F, ¢) :/ H d(xi, x;)dxy . .. dx.
A

Def: A sequence of graphs (G,),cn convergences to the graphon ¢ if

lim d(Gp,¢) = 0.

n—-+oo

12



Modelling the ressources

Recall: ) _
RE™ ="M ALPY.
j~i
* Hyp: it is possible to index the plant and pollinator species s.t. for all

n,m € N*, there exists a continuous (random) function
cmm 0,1 = R, s.t.

, . nm _ amel J
Vie{l,...,n}, Vje{1,...,m}, il =c (E;>
Moreover, we suppose that there exists a (random) function
¢ : [0,1]? = R such that the sequence of functions c"™(.,.) converges
to ¢(.,.), when n and m tend to +o0.

13
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Recall: ) _
RE™ ="M ALPY.
j~i
* Hyp: it is possible to index the plant and pollinator species s.t. for all
n,m € N*, there exists a continuous (random) function
cmm 0,1 = R, s.t.

Vie{l,...,n}, Yje{l,...,m} " =crm(L L)

u n'm

Moreover, we suppose that there exists a (random) function
¢ : [0,1]? = R such that the sequence of functions c"™(.,.) converges
to ¢(.,.), when n and m tend to +o0.

% Example: when the cg’m depend on the degree of generalism:

n,m i —1d " J
™ =p(x,y) = p(FP},(;), FA,rln(;)>'
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Cinetic averaging of the graph
‘Th: Let us consider two independent sequences of i.i.d. random variables
(x")i>1, (¥')j>1 on [0,1], and good ICs. For n,m — +o0, (P{(dx), A" (dx))t>0

converge in C(Ry, M%([0,1])) to a process (P, A) in C(R+, M%([0,1])), such
that:

(i) for all t > 0, P; and A; admit densities p(x, t) and a(y, t) with respect to
the Lebesgue measure on [0, 1],

(i) (P, A) is the unique solution, for f € C([0,1],R), of
/01 F0aP) = | " F(x)dBo(x)dx
—i—/ot/ol f(x)g" (ﬁ(x, s)/01p(x,}/)¢>(x,y)a(y7s)dy)p(x, s)dx ds,
/01 f(y)dAdy) :/01 f(y)dao(y)dy
+ /Of/ol f(y) [gA (é(x,s) /01 p(x, ¥)é(x, y)B(x, s)dx)

—H x3a(y, s)] a(y,s)dy ds.
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