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Introduction
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Hawkes processes were introduced to model earthquakes and
their replicas.1
These point processes are now used in a increasingly wide
variety of applicative fields to model

the arrival instants of events

exhibiting a form of

self-excitation, or attraction:
the occurrence of an event tends to

encourage the occurrence of subsequent events.

1 A. Hawkes (1971). “Spectra of some self-exciting and mutually
exciting point processes”. In: Biometrika 1.
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Many such fields need to model phenomena exhibiting also

self-inhibition, or repulsion:
the occurrence of an event tends to

discourage the occurrence of subsequent events.

For instance in neurobiology the firing of a neuron may create a
refractory period for this neuron, and complex regulations are
obtained by some neurons having an inhibitory effect on others.
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The case of

self-excitation

has been studied actively for a long time, and is well documented.
Notably, Hawkes and Oakes2 have provided a decomposition as a

cluster point process with immigration and branching:
the points which arise from the excitation from a previous

point are considered as the offspring of that ancestor.

It allows to apply branching process techniques.

In contrast,

self-inhibition

is much less well understood, in particular due to the loss of
monotonicity.

Notably, the cluster point process representation fails.

2 A.G. Hawkes and D. Oakes (1974). “A cluster process representation
of a self-exciting process”. In: Journal of Applied Probability.
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The purpose of our paper3 is to consider processes with both

self-inhibition and self-excitation

and obtain

long-time limit results
suitable for statistical applications,

and in particular to extend

concentration inequalities

obtained by Reynaud-Bouret and Roy⁴.

3 M. Costa et al. (2018). “Renewal in Hawkes processes with
self-excitation and inhibition”. In: arXiv:1801.04645.

⁴ P. Reynaud-Bouret and E. Roy (2007). “Some non asymptotic tail
estimates for Hawkes processes”. In: Bulletin of the Belgian Mathematical
Society-Simon Stevin 5.
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Definition of the Hawkes process
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Hawkes process

Definition 1
The point process #ℎ on R is a Hawkes process on (0,+∞) with

initial condition #0 ∈ N((−∞, 0]) with law m,
base intensity _ > 0,
and (signed) reproduction function ℎ : (0,+∞) → R ,

if #ℎ |(−∞,0] = #
0 and the conditional intensity of #ℎ |(0,+∞) w.r.t.

(FB)B≥0 is given by

Λℎ : B ∈ (0,+∞) 7→ Λℎ(B) =

(
_ +

∑
C∈#ℎ, C<B

ℎ(B − C)

)+
=

(
_ +

∫
(−∞,B)

ℎ(B − C) #ℎ(dC)
)+

.

(1)
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Martingale formulation

Definition 1 is a

martingale formulation of an equation for the law of #ℎ:
the conditional intensity Λℎ of #ℎ depends on #ℎ itself.

Existence and uniqueness (in law) of the Hawkes process has to
be proved, under appropriate assumptions.
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Poisson-driven equation representation

We take a unit (FB)B≥0-Poisson point process & on (0,+∞)2.
We build a pathwise unique strong solution of the equation

#ℎ = #0 +

∫
(0,+∞)×(0,+∞)

XC1{\≤Λℎ(C)} &(dC, d\) ,

Λℎ(C) =

(
_ +

∫
(−∞,C)

ℎ(C − A) #ℎ(dA)
)+
, C > 0 .

(2)

Such equations have been much studied when ℎ ≥ 0, see⁵, e.g.
⁵ P. Brémaud and L. Massoulié (1996). “Stability of nonlinear Hawkes

processes”. In: Annals of Probability 3; P. Brémaud, G. Nappo, and
G.L. Torrisi (2002). “Rate of convergence to equilibrium of marked Hawkes
processes”. In: Journal of Applied Probability; L. Massoulié (1998).
“Stability results for a general class of interacting point processes dynamics,
and applications”. In: Stochastic Processes and their Applications.
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Existence and uniqueness

Existence and uniqueness is a non-explosion issue.

The counting process (#ℎ
B )B∈R of #ℎ is given by

#ℎ((0, 1]) = #ℎ
1 − #

ℎ
0 , −∞ < 0 < 1 < ∞ , #ℎ

0 = 0 .

It satisfies the time-inhomogeneous SDE, equivalent to (2),

#ℎ
B =

∫
(0,B]×(0,+∞)

1{\≤Λℎ(C)} &(dC, d\) , B ≥ 0 ,

Λℎ(C) =

(
_ +

∫
(−∞,0]

ℎ(C − A) d#ℎ
A︸                   ︷︷                   ︸

determined by #0

+

∫
(0,C)

ℎ(C − A) d#ℎ
A︸                ︷︷                ︸

depends on (#ℎ
A )0≤A≤C

)+
, C > 0 .
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Notation

When the Hawkes process is well-defined, i.e., when existence
and uniqueness holds, we use the notation

Pm and Em

to specify that #0 has law m.

When
m = Xa for some a ∈ N((−∞, 0])

we use
Pa and Ea .

We shall often consider the case

a = ∅ , the null measure having no point on (−∞, 0] .
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Range of influence

The support of ℎ is naturally defined as the support of the
measure

`(dB) = ℎ(B) dB .

It is given by

supp(ℎ) , (0,+∞) \
⋃

� open,
∫
�
|ℎ|(B) dB=0

� .

We assume w.l.o.g. that ℎ = ℎ1supp(ℎ) and define

!(ℎ) , sup(supp(ℎ)) , sup{B > 0, |ℎ(B)| > 0} ∈ [0,+∞] .

This is the maximal range of influence of a point.
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Main results
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Shifted point processes
We aim at studying the limit behavior of the process on

a sliding finite time window of length �.

For a point process # we introduce the time-shifted processes

#(· + B) ≡ (#B+A − #B)A∈R , B ≥ 0 ,

which is such that

#ℎ(· + B)((0, 1]) = #ℎ((0 + B, 1 + B]) , −∞ < 0 < 1 < ∞ .

Time is labeled so that observation has started by time −�, and

#ℎ(· + B)|(−�,0] = #
ℎ |(B−�,B](· + B) ≡ (#B+A − #B)−�<A≤0

where we abuse notation by identifying # |� and #1�, etc.
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Quantities of interest

The quantities of interest will be of the form

1
)

∫ )

0
5
(
#ℎ(· + B)|(−�,0]

)
dB (3)

where
� > 0 a finite sliding window length,
5 is a locally bounded Borel function on N((−�, 0]),
) > 0 is a large time horizon, and we shall let ) →∞.

Such quantities appear commonly in the field of

statistical inference of random processes.

Recall that observation has started by time −�.
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Main assumptions

Assumption 1

The signed function ℎ : (0,+∞) → R is such that

!(ℎ) ≤ � < ∞ , ‖ℎ+‖1 ,

∫
(0,+∞)

ℎ+(B) dB < 1 .

The distribution m of the initial condition #0 is such that

Em
(
#0(−!(ℎ), 0]

)
< ∞.

Then the quantities (3) actually depend only on the restriction
#0 |(−�,0] of the initial condition #0 to (−�, 0].
With abuse of notation, we identify m with its marginal on
N((−�, 0]) and denote by ∅ the null point process on (−�, 0].
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Auxiliary Markov process

To exploit the regeneration structure of the Hawkes process #ℎ

with finite influence range, we introduce the auxiliary process

(-B)B≥0 , -B , #ℎ(· + B)|(−�,0] .

Under Assumption 1 we prove that
the process (-B)B≥0 is strong Markov for (FB)B≥0,
the null point process ∅ is positive recurrent,
there exists a unique invariant law c�.

Note that we can then construct a two-sided Markov process in
equilibrium on R, and hence a stationary version of #ℎ on R.
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(-B)B≥0 , -B , #ℎ(· + B)|(−�,0] .

Under Assumption 1 we prove that
the process (-B)B≥0 is strong Markov for (FB)B≥0,
the null point process ∅ is positive recurrent,
there exists a unique invariant law c�.

Note that we can then construct a two-sided Markov process in
equilibrium on R, and hence a stationary version of #ℎ on R.
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Strong Markov property

We derive the strong Markov property for (-B)B≥0 from

the fact that & is a (FB)B≥0-Poisson point process and thus
satisfies the strong Markov property,
existence and uniqueness in law of the solution of Eq. (2).
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Invariant law

The invariant law c� of (-B)B≥0 can be written in terms of the
occupation measure over an excursion.

The return time to ∅ is defined by

g , inf{B > 0 : -B− , ∅, -B = ∅}

, inf{B > 0 : #ℎ[B − �, B) , 0, #ℎ(B − �, B] = 0} .

For every non-negative Borel function 5 ,

c� 5 ,
1

E∅(g)
E∅

(∫ g

0
5 (-B) dB

)
,

1
E∅(g)

E∅

(∫ g

0
5
(
#ℎ(· + B)|(−�,0]

)
dB

)
. (4)
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Pointwise ergodic theorem

Theorem 1
Let #ℎ be a Hawkes process with _ > 0, ℎ : (0,+∞) → R,
and #0 with law m, satisfying Assumption 1.

Then it has an unique invariant law c� given by (4).
If 5 is a Borel function which is nonnegative or c�-integrable,
then

1
)

∫ )

0
5
(
#ℎ(· + B)|(−�,0]

)
dB

Pm−a.s.
−−−−−−→
)→∞

c� 5 .

We use renewal techniques to prove this.
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Convergence to a process in equilibrium

Theorem 2
Let #ℎ be a Hawkes process with _ > 0, ℎ : (0,+∞) → R,
and #0 with law m, satisfying Assumption 1.

Then convergence to equilibrium for large times holds in the
following sense:

Pm
(
#ℎ(· + B)|[0,+∞) ∈ ·

) total variation
−−−−−−−−−−→

B→∞
Pc�(#

ℎ |[0,+∞) ∈ ·) .

This is used in proofs of the sequel, and has independent interest.
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Convergence to a process in equilibrium

Theorem 2
Let #ℎ be a Hawkes process with _ > 0, ℎ : (0,+∞) → R,
and #0 with law m, satisfying Assumption 1.
Then convergence to equilibrium for large times holds in the
following sense:

Pm
(
#ℎ(· + B)|[0,+∞) ∈ ·

) total variation
−−−−−−−−−−→

B→∞
Pc�(#

ℎ |[0,+∞) ∈ ·) .

This is used in proofs of the sequel, and has independent interest.
We use results in Thorisson⁶ based on renewal techniques and
coupling to prove it.

⁶ Hermann Thorisson (2000). Coupling, stationarity, and regeneration.
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Central limit theorem

Theorem 3
Let #ℎ be a Hawkes process with _ > 0, ℎ : (0,+∞) → R,
and #0 with law m, satisfying Assumption 1.

If 5 is Borel and c�-integrable and satisfies

f2( 5 ) ,
1

E∅(g)
E∅

((∫ g

0

(
5
(
#ℎ(· + B)|(−�,0]

)
− c� 5

)
dB

)2)
< ∞

then

√
)

(
1
)

∫ )

0
5
(
#ℎ(· + B)|(−�,0]

)
dB − c� 5

)
in law
−−−−→
)→∞

N(0,f2( 5 )) .

We use renewal techniques to prove this.

Costa-G.-Marsalle-Tran (Toulouse-X-Lille2) Limit theorems for Hawkes processes Sylvie’s 60th birthday conference 23



Central limit theorem

Theorem 3
Let #ℎ be a Hawkes process with _ > 0, ℎ : (0,+∞) → R,
and #0 with law m, satisfying Assumption 1.
If 5 is Borel and c�-integrable and satisfies

f2( 5 ) ,
1

E∅(g)
E∅

((∫ g

0

(
5
(
#ℎ(· + B)|(−�,0]

)
− c� 5

)
dB

)2)
< ∞

then

√
)

(
1
)

∫ )

0
5
(
#ℎ(· + B)|(−�,0]

)
dB − c� 5

)
in law
−−−−→
)→∞

N(0,f2( 5 )) .

We use renewal techniques to prove this.

Costa-G.-Marsalle-Tran (Toulouse-X-Lille2) Limit theorems for Hawkes processes Sylvie’s 60th birthday conference 23



Central limit theorem

Theorem 3
Let #ℎ be a Hawkes process with _ > 0, ℎ : (0,+∞) → R,
and #0 with law m, satisfying Assumption 1.
If 5 is Borel and c�-integrable and satisfies

f2( 5 ) ,
1

E∅(g)
E∅

((∫ g

0

(
5
(
#ℎ(· + B)|(−�,0]

)
− c� 5

)
dB

)2)
< ∞

then

√
)

(
1
)

∫ )

0
5
(
#ℎ(· + B)|(−�,0]

)
dB − c� 5

)
in law
−−−−→
)→∞

N(0,f2( 5 )) .

We use renewal techniques to prove this.
Costa-G.-Marsalle-Tran (Toulouse-X-Lille2) Limit theorems for Hawkes processes Sylvie’s 60th birthday conference 23



Pointwise ergodic theorems and their CLTs have been much
investigated in the case of nonnegative reproduction functions ℎ,
see⁷, e.g. The results usually concern the

instantaneous values #ℎ
B of the counting process.

The proofs usually rely on martingale techniques.

Here the results concern sliding windows of arbitrary finite
length of the point measure #ℎ, and hence the

sub-processes (#ℎ
B+A)−�<A≤0 of the counting process.

The proofs use renewal techniques that will also help us establish

non-asymptotic exponential concentration bounds.

⁷ E. Bacry et al. (2013). “Some limit theorems for Hawkes processes
and application to financial statistics”. In: Stochastic Process. Appl. 7.
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Notation
Let the first entrance time at ∅ be defined by

g0 , inf{B≥0 : #ℎ(B − �, B] = 0} . (5)

Recall that F+ = max(F, 0) and F− = max(−F, 0) for F ∈ R.
Let (F)9± = (F

±)9 and

2±( 5 ) , sup
9≥3

(
2
9!

E∅
( (∫ g

0

(
5
(
#ℎ(· + B)|(−�,0]

)
−c� 5

)
dB

)9
±

)
E∅(g)f2( 5 )

) 1
9−2

,

2±(g) , sup
9≥3

(
2
9!
E∅

(
(g − E∅(g))

9
±

)
Var∅(g)

) 1
9−2

,

2+(g0) , sup
9≥3

(
2
9!
Em

(
(g0 − Em(g0))

9
+

)
Varm(g0)

) 1
9−2

.
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Concentration inequalities

Theorem 4
Let #ℎ be a Hawkes process with _ > 0, ℎ : (0,+∞) → R,
and #0 with law m, satisfying Assumption 1.

If 5 is Borel and takes its values in a bounded interval [0, 1] then,
for all Y > 0 and ) sufficiently large,

Pm

(����1) ∫ )

0
5
(
#ℎ(· + B)|(−�,0]

)
dB − c� 5

���� ≥ Y)
satisfies a concentration inequality bound depending only on the
parameters, given in the next slide.
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Theorem 4
Let #ℎ be a Hawkes process with _ > 0, ℎ : (0,+∞) → R,
and #0 with law m, satisfying Assumption 1.
If 5 is Borel and takes its values in a bounded interval [0, 1] then,
for all Y > 0 and ) sufficiently large,

Pm

(����1) ∫ )

0
5
(
#ℎ(· + B)|(−�,0]

)
dB − c� 5

���� ≥ Y)
satisfies a concentration inequality bound depending only on the
parameters, given in the next slide.

We used renewal techniques and the reference book⁸ in the proof.

⁸ Pascal Massart (2007). Concentration inequalities and model selection.
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Pm

(����1) ∫ )

0
5
(
#ℎ(· + B)|(−�,0]

)
dB − c� 5

���� ≥ Y)
≤ exp

(
−

(() −
√
))Y − |1 − 0|E∅(g))

2

8)f2( 5 ) + 42+( 5 )(() −
√
))Y − |1 − 0|E∅(g))

)
+ exp

(
−

(() −
√
))Y − |1 − 0|E∅(g))

2

8)f2( 5 ) + 42−( 5 )(() −
√
))Y − |1 − 0|E∅(g))

)
+ exp ©­«− (() −

√
))Y − |1 − 0|E∅(g))

2

8) |1 − 0|2 Var∅(g)
E∅(g)

+ 4|1 − 0|2+(g)(() −
√
))Y − |1 − 0|E∅(g))

ª®¬
+ exp ©­«− (() −

√
))Y − |1 − 0|E∅(g))

2

8) |1 − 0|2 Var∅(g)
E∅(g)

+ 4|1 − 0|2−(g)(() −
√
))Y − |1 − 0|E∅(g))

ª®¬
+ exp

(
−

(
√
)Y − 2|1 − 0|Em(g0))2

8|1 − 0|2 Varm(g0) + 4|1 − 0|2+(g0)(
√
)Y − 2|1 − 0|Em(g0))

)
.

If # |(−�,0] = ∅ then the last term of the r.h.s. is null and the upper bound is
true with ) instead of ) −

√
) in the other terms.



More practical exponential bounds
This concentration inequality can be simplified using upper
bounds for the constants 2±( 5 ) and 2±(g).

Theorem 5
Under these assumptions, there exists U > 0 s.t. E∅(4Ug) < ∞. Let

D =
2(1 − 0)2

U2

⌊ )

E∅(g)

⌋
E∅(4

Ug)4UE∅(g) and 2 =
|1 − 0|

U
.

Then for all Y > 0 we can give a more practical expression for

Pm

(����1) ∫ )

0
5
(
#ℎ(· + B)|(−�,0]

)
dB − c� 5

���� ≥ Y) .
See the next slide.
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Exponential bounds
In particular

P∅

(����1) ∫ )

0
5
(
#ℎ(· + B)|(−�,0]

)
dB − c� 5

���� ≥ Y)
≤ 4 exp

©­­«−
(
)Y − |1 − 0|E∅(g)

)2
4 (2D + 2()Y − |1 − 0|E∅(g)))

ª®®¬
or equivalently, for all 1 ≥ [ > 0,

P∅

(����1) ∫ )

0
5
(
#ℎ(· + B)|(−�,0]

)
dB − c� 5

���� ≥ Y[) ≤ [ ,
Y[ =

1
)

(
|1 − 0|E∅(g) − 22 log

([
4

)
+

√
422 log2

([
4

)
− 8D log

([
4

))
.
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Main ideas for the proofs
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Coupling with a Hawkes process
with pure self-excitation

An important idea will be to construct a coupling between

the Hawkes process with signed reproduction function ℎ
the Hawkes process with reproduction function ℎ+ ≥ 0.

This will be used for proving existence and uniqueness by proving

non-explosion

as well as for estimates which will allow us to prove the existence
of exponential moments

E∅(4
Ug) < ∞ for some U > 0

and in particular to prove positive recurrence.

Costa-G.-Marsalle-Tran (Toulouse-X-Lille2) Limit theorems for Hawkes processes Sylvie’s 60th birthday conference 31



Coupling with a Hawkes process
with pure self-excitation

An important idea will be to construct a coupling between
the Hawkes process with signed reproduction function ℎ

the Hawkes process with reproduction function ℎ+ ≥ 0.
This will be used for proving existence and uniqueness by proving

non-explosion

as well as for estimates which will allow us to prove the existence
of exponential moments

E∅(4
Ug) < ∞ for some U > 0

and in particular to prove positive recurrence.

Costa-G.-Marsalle-Tran (Toulouse-X-Lille2) Limit theorems for Hawkes processes Sylvie’s 60th birthday conference 31



Coupling with a Hawkes process
with pure self-excitation

An important idea will be to construct a coupling between
the Hawkes process with signed reproduction function ℎ
the Hawkes process with reproduction function ℎ+ ≥ 0.

This will be used for proving existence and uniqueness by proving

non-explosion

as well as for estimates which will allow us to prove the existence
of exponential moments

E∅(4
Ug) < ∞ for some U > 0

and in particular to prove positive recurrence.

Costa-G.-Marsalle-Tran (Toulouse-X-Lille2) Limit theorems for Hawkes processes Sylvie’s 60th birthday conference 31



Coupling with a Hawkes process
with pure self-excitation

An important idea will be to construct a coupling between
the Hawkes process with signed reproduction function ℎ
the Hawkes process with reproduction function ℎ+ ≥ 0.

This will be used for proving existence and uniqueness by proving

non-explosion

as well as for estimates which will allow us to prove the existence
of exponential moments

E∅(4
Ug) < ∞ for some U > 0

and in particular to prove positive recurrence.

Costa-G.-Marsalle-Tran (Toulouse-X-Lille2) Limit theorems for Hawkes processes Sylvie’s 60th birthday conference 31



Coupling with a Hawkes process
with pure self-excitation

An important idea will be to construct a coupling between
the Hawkes process with signed reproduction function ℎ
the Hawkes process with reproduction function ℎ+ ≥ 0.

This will be used for proving existence and uniqueness by proving

non-explosion

as well as for estimates which will allow us to prove the existence
of exponential moments

E∅(4
Ug) < ∞ for some U > 0

and in particular to prove positive recurrence.

Costa-G.-Marsalle-Tran (Toulouse-X-Lille2) Limit theorems for Hawkes processes Sylvie’s 60th birthday conference 31



Coupling with a Hawkes process
with pure self-excitation

An important idea will be to construct a coupling between
the Hawkes process with signed reproduction function ℎ
the Hawkes process with reproduction function ℎ+ ≥ 0.

This will be used for proving existence and uniqueness by proving

non-explosion

as well as for estimates which will allow us to prove the existence
of exponential moments

E∅(4
Ug) < ∞ for some U > 0

and in particular to prove positive recurrence.

Costa-G.-Marsalle-Tran (Toulouse-X-Lille2) Limit theorems for Hawkes processes Sylvie’s 60th birthday conference 31



Existence and uniqueness, coupling

Theorem 6
Consider Equation (2) for #ℎ and the similar equation for #ℎ+

in which ℎ is replaced by ℎ+. Assume that

‖ℎ+‖1 < 1 , ∀B > 0,
∫ B

0
Em

( ∫
(−∞,0]

ℎ+(C − A) #0(dA)
)
dC < ∞.

Then there exists a pathwise unique strong solution #ℎ which is
a Hawkes process in the sense of Definition 1, the similar result
holds for #ℎ+, and moreover

#ℎ ≤ #ℎ+ .
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Exponential moments for the return time
Recall that the return time to ∅ is given by

g , inf{B > 0 : #ℎ[B − �, B) , 0, #ℎ(B − �, B] = 0} ,

We shall prove the existence of exponential moments

E∅(4
Ug) < ∞ for some U > 0

using this coupling.

Indeed, denoting by g+ the corresponding return time for the
process #ℎ+ defined with ℎ+ ≥ 0, clearly

g ≤ g+

and we need only study g+ and #ℎ+, i.e., Hawkes processes with
non-negative reproduction functions.

Costa-G.-Marsalle-Tran (Toulouse-X-Lille2) Limit theorems for Hawkes processes Sylvie’s 60th birthday conference 33



Exponential moments for the return time
Recall that the return time to ∅ is given by

g , inf{B > 0 : #ℎ[B − �, B) , 0, #ℎ(B − �, B] = 0} ,

We shall prove the existence of exponential moments

E∅(4
Ug) < ∞ for some U > 0

using this coupling.
Indeed, denoting by g+ the corresponding return time for the
process #ℎ+ defined with ℎ+ ≥ 0, clearly

g ≤ g+

and we need only study g+ and #ℎ+

, i.e., Hawkes processes with
non-negative reproduction functions.

Costa-G.-Marsalle-Tran (Toulouse-X-Lille2) Limit theorems for Hawkes processes Sylvie’s 60th birthday conference 33



Exponential moments for the return time
Recall that the return time to ∅ is given by

g , inf{B > 0 : #ℎ[B − �, B) , 0, #ℎ(B − �, B] = 0} ,

We shall prove the existence of exponential moments

E∅(4
Ug) < ∞ for some U > 0

using this coupling.
Indeed, denoting by g+ the corresponding return time for the
process #ℎ+ defined with ℎ+ ≥ 0, clearly

g ≤ g+

and we need only study g+ and #ℎ+, i.e., Hawkes processes with
non-negative reproduction functions.

Costa-G.-Marsalle-Tran (Toulouse-X-Lille2) Limit theorems for Hawkes processes Sylvie’s 60th birthday conference 33



Cluster point process decomposition
A Hawkes process with non-negative reproduction function ℎ
enjoys a decomposition as a cluster point process with
immigration and branching.⁹

The conditional intensity can be decomposed into the sum

Λℎ(B) = _ +
∑

C∈#ℎ, C<B

ℎ(B − C) .

The arrivals due to the base intensity _ are considered as
those of immigrants.
The arrivals due to the influence of a previous arrival are
considered as those of its offspring.
Such arrivals are i.i.d. up to time-shift, and belong to a
multi-generational family started by an immigrant.

⁹ A.G. Hawkes and D. Oakes (1974). “A cluster process representation
of a self-exciting process”. In: Journal of Applied Probability.
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In this context ‖ℎ‖1 is interpreted as the

mean number of offspring of any arrival

and
‖ℎ‖1 ≤ 1

is the classic sub-criticality condition which ensures that each
family started by an immigrant is finite and well-controlled.
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Interpretation using a "/�/∞ queue

We interpret the immigrants as jobs arriving at rate _ with i.i.d.
service times.

The service time of a job will be the sum
of the duration up to the arrival of last member of its family
and of �.

Recall that the influence range of a point satisfies

!(ℎ) ≤ � < ∞ .

Thus, after this service time we are sure that the job and its
family will not influence the future of #ℎ.
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Emptying of the "/�/∞ queue

Let (.B)B≥0 denote the queue-length process, T0 , 0, and

T9 , inf{B > T9−1 : .B− , 0 , .B = 0} , 9 ≥ 1 .

Then the (T9)9≥1 are renewal times for the auxiliary Markov
process (-B)B≥0,

-T9 = ∅ for 9 ≥ 1 , and g ≤ T1 .

We prove positive recurrence of ∅ for (-B)B≥0 by proving positive
recurrence of 0 for (.B)B≥0. We moreover prove that

E∅(4
UT1) < ∞ for some U > 0

which implies the same exponential moment bound for g.
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Return times of a "/�/∞ queue

We now state a general result on the tail behavior of the return
time to zero T1 of an initially empty "/�/∞ queue with a
service time having exponential moments:
T1 then has basically the worse exponential moment between
those of the inter-arrival time and of the service time.
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Return times of a "/�/∞ queue

We now state a general result on the tail behavior of the return
time to zero T1 of an initially empty "/�/∞ queue with a
service time having exponential moments:
T1 then has basically the worse exponential moment between
those of the inter-arrival time and of the service time.
The result is based on the computation of the Laplace transform
E(e−AT1) on the half-plane {A ∈ C : <(A) > 0} by Takács1⁰.
There the abscissa of convergence A2 is non-positive, but there is
an apparent singularity on the pure imaginary axis.
We remove it using integration by parts and use Laplace
transform theory and analytical continuation to prove that

f2 ≤ −W for some appropriate W > 0 .
1⁰ L. Takács (1956). “On a probability problem arising in the theory of

counters”. In: Proc. Cambridge Philos. Soc.
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Theorem 7
Consider a "/�/∞ queue with arrival rate _ > 0 and generic
service time � such that P(� = 0) < 1 and, for some W > 0,

P(� > B) , 1 − �(B) = $(e−WB) , B ≥ 0 .

The queue is started at 0. Let
+1 denote the arrival time of the first customer,
T1 denote the subsequent time of return to 0 of the queue,
� = T1 − +1 denote the corresponding busy period.

Then the following holds.
1 If V < W then E(eV�) < ∞. In particular P(� ≥ B) = $(e−VB).
2 If _ < W then P(T1 ≥ B) = $(e−_B).

If W ≤ _ then P(T1 ≥ B) = $(e−UB) for every U < W.
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Elements of proof
We have T1 = +1 + � where +1 and � are independent.
Takács11 has proved that the Laplace transform of T1 satisfies

E(e−AT1) = 1 −
1

_ + A

1∫ ∞
0 e−AB−_

∫ B

0 [1−�(C)] dC dB
, A ∈ C , <(A) > 0 .

Since the Laplace transform of +1 is _
_+A

, the Laplace transform of
� satisfies

E(e−A�) =
_ + A

_
−

1
_

1∫ ∞
0 e−AB−_

∫ B

0 [1−�(C)] dC dB
, A ∈ C , <(A) > 0 ,

and we study this formula.

11 L. Takács (1956). “On a probability problem arising in the theory of
counters”. In: Proc. Cambridge Philos. Soc.
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There is an apparent singularity in the r.h.s. at<(A) = 0 since

lim
A→$+

E(e−A�) = 1 =⇒ lim
A→$+

∫ ∞

0
e−AB−_

∫ B

0 [1−�(C)] dC dB = ∞ .

It can be seen directly on the integral since∫ ∞

0
[1 − �(C)] dC = E[�] > 0 .

We shall remove it by integration by parts and then prove that
the abscissa of convergence f2 of the Laplace transform E(e−A�)
satisfies

f2 ≤ −W < 0 .
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We use integration by parts: on the half-line {A ∈ R : A > 0},∫ ∞

0
e−AB−_

∫ B

0 [1−�(C)] dC dB

=

[
e−AB

−A
e−_

∫ B

0 [1−�(C)] dC
]∞
B=0

−

∫ ∞

0

e−AB

−A
(−_[1 − �(B)]) e−_

∫ B

0 [1−�(C)] dC dB

=
1
A
−
_

A

∫ ∞

0
[1 − �(B)] e−AB−_

∫ B

0 [1−�(C)] dC dB .
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Snce 1 − �(B) = $(e−WB) and

_

∫ ∞

0
[1 − �(B)] e−_

∫ B

0 [1−�(C)] dC dB =
[
−e−_

∫ B

0 [1−�(C)] dC
]∞
B=0

= 1 − e−_E(�) < 1 ,

we define a constant \ < 0 and an analytic function 5 by setting

\ = inf
{
A ≤ 0 : _

∫ ∞

0
[1 − �(B)] e−AB−_

∫ B

0 [1−�(C)] dC dB < 1
}
∨ (−W) ,

5 (A) =
_ + A

_
−
A

_

1

1 − _
∫ ∞
0 [1 − �(B)] e

−AB−_
∫ B

0 [1−�(C)] dC dB
, <(A) > \ .
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The Laplace transform E(e−A�) has an abscissa of convergence
f2 ≤ 0 and is analytic in the half-plane {A ∈ C : <(A) > f2}, see
Widder12.

Both this Laplace transform and 5 are analytic in the domain
{A ∈ C : <(A) > max(\,f2)},

12 David Vernon Widder (1941). The Laplace Transform.
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The Laplace transform E(e−A�) has an abscissa of convergence
f2 ≤ 0 and is analytic in the half-plane {A ∈ C : <(A) > f2}, see
Widder12.

Both this Laplace transform and 5 are analytic in the domain
{A ∈ C : <(A) > max(\,f2)},

Since these two analytic functions coincide there on the half-line
{A ∈ R : A > 0}, they must coincide in the whole domain, see
Rudin13, so that

E(e−A�) = 5 (A) , A ∈ C , <(A) > max(\,f2) .

Moreover, this Laplace transform must have an analytic
singularity at A = f2, see Widder10, and since 5 is analytic in
{A ∈ C : <(A) > \} necessarily f2 ≤ \.

12 David Vernon Widder (1941). The Laplace Transform.
13 Walter Rudin (1987). Real and complex analysis. Third.
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Since \ < 0, by monotone convergence

lim
A→\+

5 (A) =
_ + \

_
−
\

_

1

1 − _
∫ ∞
0 [1 − �(B)] e

−\B−_
∫ B

0 [1−�(C)] dC dB

= E(e−\�) ∈ [1,∞] ,

which implies that

_

∫ ∞

0
[1 − �(B)] e−\B−_

∫ B

0 [1−�(C)] dC dB < 1,

and thus that \ = −W.
We conclude that

f2 ≤ −W .

Thus, if V < W then E(eV�) < ∞.
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The End

Thank you all for your attention

Sylvie, have a great
60th birthday conference
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