How to turn an evolutionary biologist upside down

Sylvain Billiard (1)

⁽¹⁾University of Lille - Lab Évo-Éco-Paléo - UMR CNRS 8198 - France

10-14 September 2018, Populations: Interactions and Evolution

The biological world: A big mess

Job: Patterns and Processes

The central paradigm

Four Major Evolutionary Forces - Review

Two separate worlds: Pop. dynamics vs. Pop. genetics

Population dynamics and ecology is not important

The central paradigm

Biological world

Deterministic Processes (mutation, selection, migration)

- + Stochastic Processes (genetic drift)
- + Noise (environmental change)

The central paradigm

Sample among > 1500 articles

- "the relative contribution of stochastic and deterministic processes to genomewide responses" (Linnen 2018, Molecular Ecology)
- "the relative importance of deterministic and stochastic assembly processes" (Spasojevic et al. 2018, Ecology)
- "allowing inference of the relative importance of deterministic versus stochastic processes" (Martins et al. Oecologia 2018)
- "deterministic (selection) and stochastic (genetic drift)
 mechanisms are expected to affect trait evolution" (Zastavniouk et al.
 2017, Ecology and Evolution)
- "notably regarding the relative contributions of deterministic versus stochastic evolutionary forces" (Chevin 2016, Evolution)

My work: the evolution of self-incompatibility in plants

Deterministic genetic frequency change due to selection

$$f_{t+1}^{G} = \sum_{g,g'} \pi(g,g') f_t^g f_t^{g'}$$
 (1)

Generating genetic drift

$$F_{t+1} \sim \text{Multinomial}\left(N, f_{t+1}^g, \ldots\right)$$
 (2)

Llaurens et al. 2008

... and then came Chi

with words like...

- Poisson point measure
- Dirac mass
- Martingale
- Stochastic Differential Equations and their approximations
- Renormalization and scaling

... and my plants population became

$$N_t^G = N_0^G + \int_0^t \left(r^G(Z_s) - d N_s^G \right) ds + M_t^G \tag{3}$$

What did I learn?

 1^{st} lesson: both population genetics and dynamics is possible

The particular case of the Primerose: an extinction problem for an nonhomogeneous random walk in the quarter plane

What did I learn?

 1^{st} lesson: both population genetics and dynamics is possible 2^{nd} lesson: Biology can bring new questions to Mathematics

... and then came Sylvie, her students and colleagues

Ex. Dynamics of multiple competing clones (with Charline Smadi)

... and then came Sylvie, her students and colleagues

Ex. Evolution with horizontal transfer (with Sylvie, Pierre, Chi, Régis)

Different approximations of the stochastic processes

- ODE
- Diffusion

What did I learn?

 1^{st} lesson: both population genetics and dynamics is possible 2^{nd} lesson: Biology can bring new questions to Mathematics 3^{rd} lesson: Different approximations of the stochastic processes, depending on scaling and parameters

... and then came Sylvie, her students and colleagues

Ex. Derivation of key parameters in ecology: Functional Responses (with Vincent and Jean-René)

What did I learn?

 1^{st} lesson: both population genetics and dynamics is possible 2^{nd} lesson: Biology can bring new questions to Mathematics 3^{rd} lesson: Different approximations of the stochastic processes, depending on scaling and parameters 4^{th} lesson: Fluctuations come from the process, there is information in it!

What did it change?

Biological world

Fundamentally stochastic

- → Different approximations
- → Importance of scalings and hypotheses about parameters
- → Evolution as a statistical property

No good reasons for opposing/separating

- Statistical models and mechanistic models
- Deterministic models and stochastic models
- Population genetics and Population dynamics

What did it change?

a bit confused now!

(thank you Sylvie.....really...)

Why confused?

I am not sure to understand the relevancy of...

- "stochastic vs. deterministic" forces, pressures, processes...
- "Genetic drift vs. selection": neutralism-selectionism controversy

Consider the level of the individua

- Migration √
- Mutation √
- Selection √
- Genetic drift ?

At different levels

- Teaching: Evolution is not deterministic \rightarrow avoid finalism
- New perspectives: noise, variance, variability, not a nuisance!
- Our understanding → different models → different scalings

Why confused?

I am not sure to understand the relevancy of...

- "stochastic vs. deterministic" forces, pressures, processes...
- "Genetic drift vs. selection": neutralism-selectionism controversy

Consider the level of the individual

- Migration √
- Mutation ✓
- Selection √
- Genetic drift ?

At different levels

- Teaching: Evolution is not deterministic \rightarrow avoid finalism
- New perspectives: noise, variance, variability, not a nuisance!
- Our understanding \rightarrow different models \rightarrow different scalings

Why confused?

I am not sure to understand the relevancy of...

- "stochastic vs. deterministic" forces, pressures, processes...
- "Genetic drift vs. selection": neutralism-selectionism controversy

Consider the level of the individual

- Migration √
- Mutation ✓
- Selection √
- Genetic drift ?

At different levels

- Teaching: Evolution is not deterministic → avoid finalism
- New perspectives: noise, variance, variability, not a nuisance!
- Our understanding \rightarrow different models \rightarrow different scalings

Upside down now... might be worse in the future!

A suggestion: consider the evolution of

- Inheritance systems: Mendelian 1/2, dominance, recombination rates, mutation rates, multilevel selection, etc.
- Indirect selection: Hitch-hiking, background selection, epistasis, Hill-Robertson effect, altruism, etc.
- Life history: ageing, senescence, life cycles, haploidy-polyploidy, clonality, etc.

For instance: Why a lower boundary to mutation rate?

"the lower barrier to mutation rate evolution may ultimately be defined not by molecular limitations but by the power of random genetic drift" (Lynch 2011).

Upside down now... might be worse in the future!

A suggestion: consider the evolution of

- Inheritance systems: Mendelian 1/2, dominance, recombination rates, mutation rates, multilevel selection, etc.
- Indirect selection: Hitch-hiking, background selection, epistasis, Hill-Robertson effect, altruism, etc.
- Life history: ageing, senescence, life cycles, haploidy-polyploidy, clonality, etc.

For instance: Why a lower boundary to mutation rate?

"the lower barrier to mutation rate evolution may ultimately be defined not by molecular limitations but by the power of random genetic drift" (Lynch 2011).

I learned so much...

... what did I teach in return?

Sylvain, tell me...

boys and girls, how does it work?

Sylvain, explain me once more...
What is sex?

