General criteria for the study of quasi-stationarity

Denis Villemonais Collaboration with Nicolas Champagnat

Université de Lorraine, Nancy, France

Populations: Interactions and Evolution, September 13, 2018

1. Absorbed processes

Process evolving stochastically in a domain $E \subset \mathbb{R}^2$, absorbed at the boundary

Process evolving stochastically in a domain $E \subset \mathbb{R}^2$, absorbed at the boundary

Process evolving stochastically in a domain $E \subset \mathbb{R}^2$, absorbed at the boundary

Process evolving stochastically in a domain $E \subset \mathbb{R}^2$, absorbed at the boundary

Process evolving stochastically in a domain $E \subset \mathbb{R}^2$, absorbed at the boundary

Process evolving stochastically in a domain $E \subset \mathbb{R}^2$, absorbed at the boundary

Process evolving stochastically in a domain $E \subset \mathbb{R}^2$, absorbed at the boundary

Process evolving stochastically in a domain $E \subset \mathbb{R}^2$, absorbed at the boundary

Process evolving stochastically in a domain $E \subset \mathbb{R}^2$, absorbed at the boundary

Let $(X_t)_{t\in [0,+\infty[}$ evolving $E\cup \{\partial\}$, where $\partial\notin E$ is absorbing. Denoting by $\tau_\partial=\inf\{t\geq 0,\; X_t=\partial\}$ the hitting time of ∂ , $X_t=\partial$, $\forall\, t\geq \tau_\partial$ almost surely.

Let $(X_t)_{t\in[0,+\infty[}$ evolving $E\cup\{\partial\}$, where $\partial\notin E$ is absorbing. Denoting by $\tau_\partial=\inf\{t\geq 0,\ X_t=\partial\}$ the hitting time of ∂ , $X_t=\partial$, $\forall\,t\geq \tau_\partial$ almost surely.

Let $(X_t)_{t\in[0,+\infty[}$ evolving $E\cup\{\partial\}$, where $\partial\notin E$ is absorbing. Denoting by $\tau_\partial=\inf\{t\geq 0,\ X_t=\partial\}$ the hitting time of ∂ ,

 $X_t = \partial$, $\forall t \ge \tau_{\partial}$ almost surely.

Let $(X_t)_{t\in [0,+\infty[}$ evolving $E\cup \{\partial\}$, where $\partial\notin E$ is absorbing. Denoting by $\tau_\partial=\inf\{t\geq 0,\; X_t=\partial\}$ the hitting time of ∂ , $X_t=\partial,\; \forall\, t\geq \tau_\partial$ almost surely.

Let $(X_t)_{t\in [0,+\infty[}$ evolving $E\cup \{\partial\}$, where $\partial\notin E$ is absorbing. Denoting by $\tau_\partial=\inf\{t\geq 0,\; X_t=\partial\}$ the hitting time of ∂ , $X_t=\partial$, $\forall\, t\geq \tau_\partial$ almost surely.

Let $(X_t)_{t\in[0,+\infty[}$ evolving $E\cup\{\partial\}$, where $\partial\notin E$ is absorbing. Denoting by $\tau_\partial=\inf\{t\geq 0,\ X_t=\partial\}$ the hitting time of ∂ , $X_t=\partial$, $\forall\,t\geq \tau_\partial$ almost surely.

Let $(X_t)_{t\in [0,+\infty[}$ evolving $E\cup \{\partial\}$, where $\partial\notin E$ is absorbing. Denoting by $\tau_\partial=\inf\{t\geq 0,\ X_t=\partial\}$ the hitting time of ∂ , $X_t=\partial$, $\forall\,t\geq \tau_\partial$ almost surely.

Let $(X_t)_{t\in [0,+\infty[}$ evolving $E\cup \{\partial\}$, where $\partial\notin E$ is absorbing. Denoting by $\tau_\partial=\inf\{t\geq 0,\; X_t=\partial\}$ the hitting time of ∂ , $X_t=\partial$, $\forall\, t\geq \tau_\partial$ almost surely.

Let $(X_t)_{t\in [0,+\infty[}$ evolving $E\cup \{\partial\}$, where $\partial\notin E$ is absorbing. Denoting by $\tau_\partial=\inf\{t\geq 0,\; X_t=\partial\}$ the hitting time of ∂ , $X_t=\partial,\; \forall\, t\geq \tau_\partial$ almost surely.

Let $(X_t)_{t\in [0,+\infty[}$ evolving $E\cup \{\partial\}$, where $\partial\notin E$ is absorbing. Denoting by $\tau_\partial=\inf\{t\geq 0,\ X_t=\partial\}$ the hitting time of ∂ , $X_t=\partial$, $\forall\, t\geq \tau_\partial$ almost surely.

In many interesting cases,

$$\mathbb{P}_{x_0}(X_t \in \cdot) \xrightarrow[t \to \infty]{} \delta_{\partial}, \ \forall x_0 \in E \cup \{\partial\}.$$

In many interesting cases,

$$\mathbb{P}_{x_0}(X_t \in \cdot) \xrightarrow[t \to \infty]{} \delta_{\partial}, \ \forall x_0 \in E \cup \{\partial\}.$$

In many interesting cases,

$$\mathbb{P}_{x_0}(X_t \in \cdot) \xrightarrow[t \to \infty]{} \delta_{\partial}, \ \forall x_0 \in E \cup \{\partial\}.$$

In many interesting cases,

$$\mathbb{P}_{x_0}(X_t \in \cdot) \xrightarrow[t \to \infty]{} \delta_{\partial}, \ \forall x_0 \in E \cup \{\partial\}.$$

In many interesting cases,

$$\mathbb{P}_{x_0}(X_t \in \cdot) \xrightarrow[t \to \infty]{} \delta_{\partial}, \ \forall x_0 \in E \cup \{\partial\}.$$

In many interesting cases,

$$\mathbb{P}_{x_0}(X_t \in \cdot) \xrightarrow[t \to \infty]{} \delta_{\partial}, \ \forall x_0 \in E \cup \{\partial\}.$$

Wright-Fisher model of genetical evolution

Discrete time/space. Let X, evolving in $E \cup \partial = \{0,1,\ldots,N\}$, denotes the number of individuals with allele A in a population of size $N \ge 2$. Assume that the transition probabilities of X are given by

$$P(i,j) = \frac{N!}{j!(N-j)!} \left(\frac{i}{N}\right)^j \left(1 - \frac{i}{N}\right)^{N-j}.$$

 $\partial = \{0, N\}$: allele A either disappears or invades the population.

Wright-Fisher model of genetical evolution

Discrete time/space. Let X, evolving in $E \cup \partial = \{0,1,\ldots,N\}$, denotes the number of individuals with allele A in a population of size $N \ge 2$. Assume that the transition probabilities of X are given by

$$P(i,j) = \frac{N!}{j!(N-j)!} \left(\frac{i}{N}\right)^j \left(1 - \frac{i}{N}\right)^{N-j}.$$

 $\partial = \{0, N\}$: allele A either disappears or invades the population.

Continuous time/space. Let X, evolving in $E \cup \partial = (0,1)$, denotes the proportion of individuals with allele A. Assume that

$$dX_t = \sqrt{X_t(1-X_t)} dB_t$$
, with B a Brownian motion.

 $\partial = \{0,1\}$: allele A either disappears or invades the population.

Penalized semi-groups

Consider a process X evolving in a state space E and add the following mechanism

- (killing) with rate $\kappa_k(X_t) \ge 0$, the particle is sent to a cemetary point $\partial \notin E$ and remains there,
- (branching) with rate $\kappa_b(X_t) \ge 0$, the process branches into two independent particles that follow the same dynamic as X (with killing and branching).

Penalized semi-groups

Consider a process X evolving in a state space E and add the following mechanism

- (killing) with rate $\kappa_k(X_t) \ge 0$, the particle is sent to a cemetary point $\partial \notin E$ and remains there,
- (branching) with rate $\kappa_b(X_t) \ge 0$, the process branches into two independent particles that follow the same dynamic as X (with killing and branching).

Then, denoting by $N_t \ge 0$ the number of particles at time t and by X^i the ith particle, one has

$$\mathbb{E}\left(\sum_{i=1}^{N_t} f(X_t^i)\right) = \mathbb{E}\left(e^{\int_0^t \kappa_b(X_s) - \kappa_k(X_s) \, ds} f(X_t)\right).$$

Penalized semi-groups

Consider a process X evolving in a state space E and add the following mechanism

- (killing) with rate $\kappa_k(X_t) \ge 0$, the particle is sent to a cemetary point $\partial \notin E$ and remains there,
- (branching) with rate $\kappa_b(X_t) \ge 0$, the process branches into two independent particles that follow the same dynamic as X (with killing and branching).

Then, denoting by $N_t \ge 0$ the number of particles at time t and by X^i the ith particle, one has

$$\mathbb{E}\left(\sum_{i=1}^{N_t} f(X_t^i)\right) = \mathbb{E}\left(e^{\int_0^t \kappa_b(X_s) - \kappa_k(X_s) ds} f(X_t)\right).$$

Multiplying this term by $e^{-t\|\kappa_b\|_{\infty}}$, one recovers the dynamic of a system with killing only, which fits into the settings of absorbed Markov processes.

2. Quasi-stationary distributions

Definition

A quasi-stationary distribution (QSD) is a probability measure α on $\it E$ such that

$$\alpha = \lim_{t \to \infty} \mathbb{P}_{\mu} \left(X_t \in \cdot | t < \tau_{\partial} \right)$$

for some initial probability measure μ on E.

Proposition

A probability measure α is a QSD if and only if, for any $t \ge 0$,

$$\alpha = \mathbb{P}_{\alpha}(X_t \in .|t < \tau_{\partial}).$$

- → Surveys and book
 - Méléard, V. 2012, Van Doorn, Pollett 2013
 - Collet, Martínez, San Martín 2013

Proposition (Absorption rate admits a limit)

If $\alpha = \lim_{t \to \infty} \mathbb{P}_{\mu}(X_t \in \cdot \mid t < \tau_{\partial})$, then there exists $\lambda_0 > 0$ such that

$$\text{absorbtion rate}(t) \stackrel{\mathsf{def}}{=} \mathbb{P}_{\mu}^{\partial}(\tau_{\partial} \in]t, t+1] | \tau_{\partial} > t) \xrightarrow[t \to \infty]{} e^{-\lambda_0}.$$

Proposition (Absorption rate admits a limit)

If
$$\alpha = \lim_{t \to \infty} \mathbb{P}_{\mu}(X_t \in \cdot \mid t < \tau_{\partial})$$
, then there exists $\lambda_0 > 0$ such that

absorbtion rate
$$(t) \stackrel{\mathsf{def}}{=} \mathbb{P}_{\mu}^{\partial}(\tau_{\partial} \in]t, t+1] | \tau_{\partial} > t) \xrightarrow[t \to \infty]{} e^{-\lambda_0}.$$

Brownian motion on E =]0,1[absorbed at $\partial = \{0,1\}$.

Proposition (Absorption rate admits a limit)

If
$$\alpha = \lim_{t \to \infty} \mathbb{P}_{\mu}(X_t \in \cdot \mid t < \tau_{\partial})$$
, then there exists $\lambda_0 > 0$ such that absorbtion $\mathrm{rate}(t) \stackrel{\mathsf{def}}{=} \mathbb{P}^{\partial}_{\mu}(\tau_{\partial} \in]t, t+1] | \tau_{\partial} > t) \xrightarrow[t \to \infty]{} e^{-\lambda_0}.$

Slowing of Mortality Rates at Older Ages In Large Medfly Cohorts (1992) Carey et al.

See also Steinsaltz & Wachter 2006

Définition

Let α be a QSD. The domain of attraction of α is the set of initial distributions μ such that

$$\lim_{t\to\infty}\mathbb{P}_{\mu}(X_t\in.|\,t<\tau_{\partial})=\alpha.$$

Définition

Let α be a QSD. The domain of attraction of α is the set of initial distributions μ such that

$$\lim_{t\to\infty}\mathbb{P}_{\mu}(X_t\in.|\,t<\tau_\partial)=\alpha.$$

In the general case:

- Existence of a QSD is not true
- Existence does not imply uniqueness of a QSD
- Uniqueness does not imply attraction of all initial distributions
- Attraction of all initial distributions does not imply uniform convergence

Définition

Let α be a QSD. The domain of attraction of α is the set of initial distributions μ such that

$$\lim_{t\to\infty}\mathbb{P}_{\mu}(X_t\in.|\,t<\tau_\partial)=\alpha.$$

In the general case:

- **Existence** of a QSD is not true
- Existence does not imply uniqueness of a QSD
- Uniqueness does not imply attraction of all initial distributions
- Attraction of all initial distributions does not imply uniform convergence

Question: how to guarantee some or all of the above properties?

3. Uniqueness of QSDs and exponential convergence

Probabilistic approach

Let X evolving in $E \cup \{\partial\}$ absorbed at ∂ .

→ Assumption A1 (Doeblin condition)

There exists a probability measure u and $c_1>0$ such that

$$\mathbb{P}_{\mathcal{X}}(X_1 \in \cdot \mid 1 < \tau_{\partial}) \ge c_1 v(\cdot), \ \forall x \in E$$

→ Assumption A2 (Harnack inequality)

$$\frac{\mathbb{P}_{V}(t < \tau_{\partial})}{\mathbb{P}_{X}(t < \tau_{\partial})} > c_{2} > 0, \ \forall x \in E, t \ge 0.$$

Theorem (Champagnat, V. 2016)

A1 and A2 \Leftrightarrow there exists C > 0, $\gamma > 0$ and $\alpha \in \mathcal{M}_1(E)$ such that, for all $\mu \in \mathcal{M}_1(E)$,

$$\left\| \mathbb{P}_{\mu}(X_t \in \cdot | \, t < \tau_{\partial}) - \alpha \, \right\|_{TV} \leq C e^{-\gamma t}.$$

Probabilistic approach

Let X evolving in $E \cup \{\partial\}$ absorbed at ∂ .

 \rightarrow Assumption A1 (Doeblin condition) There exists a probability measure ν and $c_1 > 0$ such that

$$\mathbb{P}_x(X_1 \in \cdot \,|\, 1 < \tau_\partial) \geq c_1 \nu(\cdot), \ \forall x \in E.$$

→ Assumption A2 (Harnack inequality)

$$\frac{\mathbb{P}_{v}(t < \tau_{\partial})}{\mathbb{P}_{x}(t < \tau_{\partial})} > c_{2} > 0, \ \forall x \in E, t \ge 0.$$

Theorem (Champagnat, V. 2016)

A1 and A2 \Leftrightarrow there exists C > 0, $\gamma > 0$ and $\alpha \in \mathcal{M}_1(E)$ such that, for all $\mu \in \mathcal{M}_1(E)$,

$$\|\mathbb{P}_{\mu}(X_t \in \cdot | t < \tau_{\partial}) - \alpha\|_{TV} \le Ce^{-\gamma t}.$$

Probabilistic approach

Let X evolving in $E \cup \{\partial\}$ absorbed at ∂ .

 \rightarrow Assumption A1 (Doeblin condition) There exists a probability measure ν and $c_1 > 0$ such that

$$\mathbb{P}_x(X_1 \in \cdot \,|\, 1 < \tau_\partial) \geq c_1 \nu(\cdot), \ \forall x \in E.$$

→ Assumption A2 (Harnack inequality)

$$\frac{\mathbb{P}_{\nu}(t < \tau_{\partial})}{\mathbb{P}_{x}(t < \tau_{\partial})} > c_{2} > 0, \ \forall x \in E, t \geq 0.$$

Theorem (Champagnat, V. 2016)

A1 and A2 \Leftrightarrow there exists C > 0, $\gamma > 0$ and $\alpha \in \mathcal{M}_1(E)$ such that, for all $\mu \in \mathcal{M}_1(E)$,

$$\left\| \mathbb{P}_{\mu}(X_t \in \cdot | t < \tau_{\partial}) - \alpha \right\|_{TV} \leq Ce^{-\gamma t}.$$

Comments and examples

- A1 and A2 have been used in several situations
 - · general one dimensional diffusion processes
 - · multi-dimensional diffusion processes (with K. Coulibaly-P)
 - · birth and death processes with catastrophes
 - · multi-dimensional birth and death processes
 - branching/dying Brownian motions
 - · time-inhomogeneous processes
 - · Benaïm, Cloez, Panloup 2016, Chazotte, Collet, Méléard 2017

Comments and examples

- A1 and A2 have been used in several situations
 - · general one dimensional diffusion processes
 - · multi-dimensional diffusion processes (with K. Coulibaly-P)
 - · birth and death processes with catastrophes
 - · multi-dimensional birth and death processes
 - · branching/dying Brownian motions
 - time-inhomogeneous processes
 - · Benaïm, Cloez, Panloup 2016, Chazotte, Collet, Méléard 2017
- A1 and A2 also imply several interesting properties
 - · Spectral properties of the infinitesimal generator
 - · Uniform convergence of $e^{\lambda_0 t} \mathbb{P}_x(t < \tau_{\partial})$ toward an eigenfunction
 - · Existence and exponential ergodicity of the Q-process

Comments and examples

- A1 and A2 have been used in several situations
 - · general one dimensional diffusion processes
 - · multi-dimensional diffusion processes (with K. Coulibaly-P)
 - · birth and death processes with catastrophes
 - · multi-dimensional birth and death processes
 - branching/dying Brownian motions
 - · time-inhomogeneous processes
 - · Benaïm, Cloez, Panloup 2016, Chazotte, Collet, Méléard 2017
- A1 and A2 also imply several interesting properties
 - · Spectral properties of the infinitesimal generator
 - · Uniform convergence of $e^{\lambda_0 t} \mathbb{P}_x(t < \tau_{\partial})$ toward an eigenfunction
 - · Existence and exponential ergodicity of the Q-process
- Intrinsec limitations
 - · Uniform convergence and uniqueness of QSD
 - compact state spaces or entrance boundary at infinity or regularity of the boundaries
 - Not suited for the study of classical models (linear BD, Orstein-Uhlenbeck, AR-1, Galton-Watson, etc...)

5. A (far) more general criterion for the study of quasi-stationarity

A first model : perturbed dynamical systems

Let E be a measurable set of \mathbb{R}^d with positive Lebesgue measure and let $\partial \not\in E$. Assume that

$$X_{n+1} = \begin{cases} f(X_n) + \xi_n & \text{if } X_n \neq \partial \text{ and } f(X_n) + \xi_n \in E, \\ \partial & \text{otherwise,} \end{cases}$$

where $f: \mathbb{R}^d \to \mathbb{R}^d$ is measurable and $(\xi_n)_{n \in \mathbb{N}}$ is an i.i.d. non-degenerate Gaussian sequence in \mathbb{R}^d .

Theorem (Champagnat, V. 2018)

If f is locally bounded such that

$$|x| - |f(x)| \xrightarrow[|x| \to +\infty]{} +\infty,$$

then there exists a quasi-stationary distribution attracting all initial distributions on E admitting an exponential moment.

A second model : diffusion processes

We consider a diffusion process X evolving in a bounded open domain $E \subset \mathbb{R}^d$ and absorbed at the boundary ∂E , solution to the SDE

$$dX_t = \sigma(X_t)dB_t + b(X_t)dt, X_0 \in E$$
,

where σ and b are Hölder and uniformly elliptic.

A second model : diffusion processes

We consider a diffusion process X evolving in a bounded open domain $E \subset \mathbb{R}^d$ and absorbed at the boundary ∂E , solution to the SDE

$$dX_t = \sigma(X_t)dB_t + b(X_t)dt, X_0 \in E$$
,

where σ and b are Hölder and uniformly elliptic.

Theorem (Champagnat, V. 2018)

There exists a unique quasi-stationary distribution.

A second model: diffusion processes

We consider a diffusion process X evolving in a bounded open domain $E \subset \mathbb{R}^d$ and absorbed at the boundary ∂E , solution to the SDE

$$dX_t = \sigma(X_t)dB_t + b(X_t)dt, X_0 \in E$$
,

where σ and b are Hölder and uniformly elliptic.

Theorem (Champagnat, V. 2018)

There exists a unique quasi-stationary distribution.

As a corollary, we obtain the existence of a unique positive function η with ${\it C}^2$ regularity such that

$$-\lambda_0 \frac{\sigma \sigma^*}{2} \Delta \eta + b \cdot \nabla \eta$$

for some $\lambda_0 > 0$, without any regularity condition on ∂E .

Main ingredients

Common properties for these irreducible processes are that

- A1-A2 is satisfied *locally*
- there exist $\varphi_1: E \to [1, +\infty)$ and $\varphi_2: E \to [0,1]$ such that

$$\mathbb{E}_x(\varphi_1(X_1)\mathbf{1}_{1<\tau_\partial}) \leq \theta_1\varphi_1(x) + C_{st} \text{ and } \mathbb{E}_x(\varphi_2(X_1)\mathbf{1}_{1<\tau_\partial}) \geq \theta_2\varphi_2(x)$$

with $0 < \theta_1 < \theta_2$, φ_1 locally bounded and φ_2 locally positive.

→ these are the two main ingredients of our general criterion

Main ingredients

Common properties for these irreducible processes are that

- A1-A2 is satisfied *locally*
- there exist $\varphi_1: E \to [1, +\infty)$ and $\varphi_2: E \to [0,1]$ such that

$$\mathbb{E}_x(\varphi_1(X_1)\mathbf{1}_{1<\tau_\partial}) \leq \theta_1\varphi_1(x) + C_{st} \text{ and } \mathbb{E}_x(\varphi_2(X_1)\mathbf{1}_{1<\tau_\partial}) \geq \theta_2\varphi_2(x)$$

with $0 < \theta_1 < \theta_2$, φ_1 locally bounded and φ_2 locally positive.

→ these are the two main ingredients of our general criterion Remark that, using Markov's property recursively, one obtains

$$\mathbb{E}(\varphi_1(X_n) \mid n < \tau_{\partial})) \leq \frac{\mathbb{E}_x(\varphi_1(X_n) \mathbf{1}_{n < \tau_{\partial}})}{\mathbb{E}_x(\varphi_2(X_n) \mathbf{1}_{n < \tau_{\partial}})} \leq \left(\theta^n \frac{\varphi_1(x)}{\varphi_2(x)}\right) \vee C_{\theta}, \ \forall \theta \in (\theta_1/\theta_2, 1)$$

Main ingredients

Common properties for these irreducible processes are that

- A1-A2 is satisfied *locally*
- there exist $\varphi_1: E \to [1, +\infty)$ and $\varphi_2: E \to [0,1]$ such that

$$\mathbb{E}_x(\varphi_1(X_1)\mathbf{1}_{1<\tau_{\hat{\sigma}}}) \leq \theta_1\varphi_1(x) + C_{st} \text{ and } \mathbb{E}_x(\varphi_2(X_1)\mathbf{1}_{1<\tau_{\hat{\sigma}}}) \geq \theta_2\varphi_2(x)$$

with $0 < \theta_1 < \theta_2$, φ_1 locally bounded and φ_2 locally positive.

→ these are the two main ingredients of our general criterion Remark that, using Markov's property recursively, one obtains

$$\mathbb{E}(\varphi_1(X_n) \mid n < \tau_{\partial})) \leq \frac{\mathbb{E}_x(\varphi_1(X_n) \mathbf{1}_{n < \tau_{\partial}})}{\mathbb{E}_x(\varphi_2(X_n) \mathbf{1}_{n < \tau_{\partial}})} \leq \left(\theta^n \frac{\varphi_1(x)}{\varphi_2(x)}\right) \vee C_{\theta}, \ \forall \theta \in (\theta_1/\theta_2, 1)$$

Hence, if $\varphi_1(x) \to +\infty$ at infinity, then the sequence $(\mathbb{P}_x(X_n \in \cdot \mid n < \tau_\partial))_{n \geq 0}$ is relatively compact and hence there exist limit distributions.

Application: convergence of a reinforced algorithm

Consider the process $(Y_t)_{t\geq 0}$ in \mathbb{R}^d evolving as follows:

 \rightarrow Y evolves following the SDE

$$dY_t = dB_t + b(X_t) dt, \ Y_0 \in \mathbb{R}^d$$
 (1)

 \rightarrow and, with rate $\kappa(Y_t) \ge 1$, the process jumps with respect to its empirical occupation measure $\frac{1}{t} \int_0^t \delta_{Y_s} ds$.

Application: convergence of a reinforced algorithm

Consider the process $(Y_t)_{t\geq 0}$ in \mathbb{R}^d evolving as follows :

 \rightarrow *Y* evolves following the SDE

$$dY_t = dB_t + b(X_t) dt, \ Y_0 \in \mathbb{R}^d$$
 (1)

 \rightarrow and, with rate $\kappa(Y_t) \ge 1$, the process jumps with respect to its empirical occupation measure $\frac{1}{t} \int_0^t \delta_{Y_s} \, \mathrm{d}s$.

Theorem (Champagnat, V. 2018; Mailler, V. 2018)

Assume that $\limsup_{x\to +\infty} \frac{\langle b(x),x\rangle}{|x|} < -\frac{3}{2}\|\kappa\|_{\infty}^{1/2}.$ Then

■ the solution to (1) admits a unique QSD v_{QSD} with an exponential moment of order $\|\kappa\|_{\infty}^{1/2}$

Application: convergence of a reinforced algorithm

Consider the process $(Y_t)_{t\geq 0}$ in \mathbb{R}^d evolving as follows :

 \rightarrow Y evolves following the SDE

$$dY_t = dB_t + b(X_t) dt, \ Y_0 \in \mathbb{R}^d$$
 (1)

 \rightarrow and, with rate $\kappa(Y_t) \ge 1$, the process jumps with respect to its empirical occupation measure $\frac{1}{t} \int_0^t \delta_{Y_s} ds$.

Theorem (Champagnat, V. 2018; Mailler, V. 2018)

Assume that $\limsup_{x\to +\infty} \frac{\langle b(x),x\rangle}{|x|}<-\frac{3}{2}\|\kappa\|_{\infty}^{1/2}$. Then

- the solution to (1) admits a unique QSD v_{QSD} with an exponential moment of order $\|\kappa\|_{\infty}^{1/2}$
- almost surely,

$$\frac{1}{t} \int_0^t \delta_{Y_s} ds \xrightarrow[t \to +\infty]{weak} \nu_{QSD}.$$

Tiny non-exhaustive bibliography on QSDs

Seminal works

- [1] Yaglom (1947) Certain limit theorems of the theory of branching random processes.
- [2] Darroch, Seneta (1967) On quasi-stationary distributions in absorbing continuous-time ...
- [3] Athrey, Ney (1972) Branching processes.

Book/surveys

- [4] Collet, Martínez, San Martín (2013) Quasi-stationary distributions.
- [5] van Doorn, Pollett (2013) Quasi-stationary distributions for discrete-state models.
- [6] Méléard, V. (2012) Quasi-stationary distributions and population processes.

Diffusion processes

- [7] Pinsky (1985) On the convergence of diffusion processes conditioned to remain in a bounded region ...
- [8] Steinsaltz and Evans (2004) Markov mortality models : Implications of quasistationarity ...
- [9] Cattiaux, Collet, Lambert, Martínez, Méléard and J. San Martín (2009) QSDs and ...
- [10] Littin (2012) Uniqueness of quasistationary distributions and discrete spectra ...
- [11] Kolb, Steinsaltz (2012) Quasilimiting behavior for one-dimensional diffusions with killing.
- [12] Hening, Kolb (2016) QSDs for one-dimensional diffusions with singular boundary points.