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Wright-Fisher model of genetical evolution

Discrete time/space. Let X, evolving in Eud =1{0,1,...,N}, denotes
the number of individuals with allele A in a population of size
N = 2. Assume that the transition probabilities of X are given by
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0=1{0,N} : allele A either disappears or invades the population.
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Discrete time/space. Let X, evolving in Eud =1{0,1,...,N}, denotes
the number of individuals with allele A in a population of size
N = 2. Assume that the transition probabilities of X are given by
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0=1{0,N} : allele A either disappears or invades the population.

Continuous time/space. Let X, evolving in Eud = (0,1), denotes
the proportion of individuals with allele A. Assume that

dX; = v/ X;(1-X;) dB;, with B a Brownian motion.

0=1{0,1} : allele A either disappears or invades the population.



Penalized semi-groups

Consider a process X evolving in a state space E and add the
following mechanism

m (killing) with rate x(X;) =0, the particle is sent to a cemetary
point 4 ¢ E and remains there,

m (branching) with rate x5(Xy) =0, the process branches into
two independent particles that follow the same dynamic as X
(with killing and branching).
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following mechanism

m (killing) with rate x(X;) =0, the particle is sent to a cemetary
point 4 ¢ E and remains there,

m (branching) with rate x5(Xy) =0, the process branches into
two independent particles that follow the same dynamic as X
(with killing and branching).

Then, denoting by Ny =0 the number of particles at time ¢ and by
X' the ith particle, one has

Ny . t
E (Zf(th)) =F (efo Kp(Xs) —K (Xy) de(Xt)) )
i=1

Multiplying this term by e~ “I®¢l~ one recovers the dynamic of a
system with killing only, which fits into the settings of absorbed
Markov processes.



2. Quasi-stationary distributions
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Definition
A quasi-stationary distribution (QSD) is a probability measure a
on E such that

a:tll%Pu(Xte-lt< T5)

for some initial probability measure u on E.

Proposition

A probability measure a is a QSD if and only if, for any £=0,
a=PyXs€.|lt<1H).

— Surveys and book

m Méléard, V. 2012, Van Doorn, Pollett 2013
m Collet, Martinez, San Martin 2013
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Proposition (Absorption rate admits a limit)

Ifa =lim; . Pu(X; € -| 1< T5), then there exists 19 >0 such that

absorbtion rate(?) L [P’ﬁ(ra elt,t+1]|t5> 1) - e o,
—00
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Proposition (Absorption rate admits a limit)
Ifa =lim; . Pu(X; € -| 1< T5), then there exists 19 >0 such that

absorbtion rate(?) L [P’z('r@ elt,t+1]|ts> 1) - e o,
—00

Brownian motion on E =]0,1[ absorbed at 0 = {0,1}.

s
taux d'absorption

temps 3
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Proposition (Absorption rate admits a limit)

Ifa =lim, . P, (X; €| £ <7p), then there exists Ag >0 such that

) f _
absorbtion rate(?) de Pz(‘[a elt,t+1]|t5> 1) - e M,
— 00

Slowing of Mortality Rates at Older Ages In Large Medfly Cohorts (1992)
Carey et al.

5 Expt. 1 (cups) Expt. 2 (cells) | [Exet. 3 (cages)

0.1 i

2

S oot

€

2 0.001
L. PR e B . A : . . . | , ) L L L
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

Age (days) Age (days) Age (days)

See also Steinsaltz & Wachter 2006

10/20



Définition
Let a be a QSD. The domain of attraction of «a is the set of initial
distributions p such that

tlir&IP”(X[(—: Jt<71y) =a.
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Définition
Let @ be a QSD. The domain of attraction of « is the set of initial
distributions p such that

tlir&lpy(Xte Jt<71y) =a.

In the general case :
m Existence of a QSD is not true
m Existence does not imply uniqueness of a QSD

m Uniqueness does not imply attraction of all initial
distributions

m Attraction of all initial distributions does not imply uniform
convergence

Question : how to guarantee some or all of the above properties ?
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3. Uniqueness of QSDs and exponential convergence
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Probabilistic approach

Let X evolving in Eu {0} absorbed at 4.
— Assumption Al (Doeblin condition)

— Assumption A2 (Harnack inequality)

Theorem (Champagnat, V. 2016)

Al and A2 & there exists C>0, ¥y >0 and a € .4 (E) such that,
for all pe 4 (E),

[Pu(X;€-lt<19)—af < Ce.
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Comments and examples

m Al and A2 have been used in several situations
- general one dimensional diffusion processes
- multi-dimensional diffusion processes (with K. Coulibaly-P)
- birth and death processes with catastrophes
- multi-dimensional birth and death processes
- branching/dying Brownian motions
- time-inhomogeneous processes
- Benaim, Cloez, Panloup 2016, Chazotte, Collet, Méléard 2017
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- birth and death processes with catastrophes
- multi-dimensional birth and death processes
- branching/dying Brownian motions
- time-inhomogeneous processes
- Benaim, Cloez, Panloup 2016, Chazotte, Collet, Méléard 2017
m Al and A2 also imply several interesting properties
- Spectral properties of the infinitesimal generator
- Uniform convergence of e, (< 75) toward an eigenfunction
- Existence and exponential ergodicity of the Q-process
m Intrinsec limitations
- Uniform convergence and uniqueness of QSD
= compact state spaces or entrance boundary at infinity
or regularity of the boundaries
- Not suited for the study of classical models (linear BD,
Orstein-Uhlenbeck, AR-1, Galton-Watson, etc...)
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5. A (far) more general criterion for the study of quasi-stationarity
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A first model : perturbed dynamical systems

Let E be a measurable set of R? with positive Lebesgue measure
and let 0 ¢ E. Assume that

fX)+¢, if Xu#0 and (X)) +En€E,
Xns1 = .
0 otherwise,

where f:IREd—» R% is measurable and (&) e is an i.i.d.
non-degenerate Gaussian sequence in R

Theorem (Champagnat, V. 2018)

If f is locally bounded such that

[x| = f ()]

+00,
| x|]—+o00

then there exists a quasi-stationary distribution attracting all initial
distributions on E admitting an exponential moment.
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A second model : diffusion processes

We consider a diffusion process X evolving in a bounded open
domain EcR? and absorbed at the boundary dE, solution to the
SDE

dXt = U(Xt)dBt + b(Xt)dt, Xb € E,

where o and b are Holder and uniformly elliptic.
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A second model : diffusion processes

We consider a diffusion process X evolving in a bounded open
domain EcR? and absorbed at the boundary dE, solution to the
SDE

dXt = U(Xt)dBt + b(Xt)dt, )(0 € E,

where o and b are Holder and uniformly elliptic.

Theorem (Champagnat, V. 2018)

There exists a unique quasi-stationary distribution.

As a corollary, we obtain the existence of a unique positive function
n with C? regularity such that

oo*

_/10 >

An+b-Vn

for some A >0, without any regularity condition on OE.
17 /20



Main ingredients

Common properties for these irreducible processes are that
m Al-A2 is satisfied locally
m there exist ¢;: E— [1,+00) and ¢2: E— [0,1] such that

Ex(p1(X1)l1<r,) <0191(x) + Cyr and Ex(@2(X1)11<,) = 02¢02(X)

with 0 <6, <8,, ¢, locally bounded and ¢2 locally positive.

— these are the two main ingredients of our general criterion
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Ex(p1(X1)11<ry) < O01¢91(xX) + Cr and Ex(2(X1)11<7,) = O2002(x)

with 0 <6, <8,, ¢, locally bounded and ¢2 locally positive.

— these are the two main ingredients of our general criterion
Remark that, using Markov's property recursively, one obtains

Ex Xn)lp<r

< ) Vv Cy, VO € (61/0,,1)
Ex (2 (X)L n<r,y) P2(x)

Hence, if ¢;(x) — +oo at infinity, then the sequence
(P(X,, €| n<Ty))n=0 is relatively compact and hence there exist
limit distributions.

18 /20



Application : convergence of a reinforced algorithm

Consider the process (Y)¢g in R4 evolving as follows :

— Y evolves following the SDE
dY, = dB,+ b(X,) dt, Yy e R? (1)

— and, with rate x(Yy) =1, the process jumps with respect to its
empirical occupation measure %f0t5ys ds.
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Theorem (Champagnat, V. 2018; Mailler, V. 2018)
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exponential moment of order x|/
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m almost surely,

1 t6 ds—»weak v
tJo Y e D
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