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1. Absorbed processes
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A generic example

Process evolving stochastically in a domain E ⊂R2, absorbed at the
boundary

→ ∂ ∉ E unique absorbing point
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Formal defintion

Let (Xt)t∈[0,+∞[ evolving E ∪ {∂}, where ∂ ∉ E is absorbing.

Denoting by τ∂ = inf{t ≥ 0, Xt = ∂} the hitting time of ∂,

Xt = ∂, ∀t ≥ τ∂ almost surely.

4 / 20



Formal defintion

Let (Xt)t∈[0,+∞[ evolving E ∪ {∂}, where ∂ ∉ E is absorbing.

Denoting by τ∂ = inf{t ≥ 0, Xt = ∂} the hitting time of ∂,

Xt = ∂, ∀t ≥ τ∂ almost surely.

Example : Process evolving in E = [0,+∞[, with absorption at ∂= 0

4 / 20



Formal defintion

Let (Xt)t∈[0,+∞[ evolving E ∪ {∂}, where ∂ ∉ E is absorbing.

Denoting by τ∂ = inf{t ≥ 0, Xt = ∂} the hitting time of ∂,

Xt = ∂, ∀t ≥ τ∂ almost surely.

Example : Process evolving in E = [0,+∞[, with absorption at ∂= 0

4 / 20



Formal defintion

Let (Xt)t∈[0,+∞[ evolving E ∪ {∂}, where ∂ ∉ E is absorbing.

Denoting by τ∂ = inf{t ≥ 0, Xt = ∂} the hitting time of ∂,

Xt = ∂, ∀t ≥ τ∂ almost surely.

Example : Process evolving in E = [0,+∞[, with absorption at ∂= 0

4 / 20



Formal defintion

Let (Xt)t∈[0,+∞[ evolving E ∪ {∂}, where ∂ ∉ E is absorbing.

Denoting by τ∂ = inf{t ≥ 0, Xt = ∂} the hitting time of ∂,

Xt = ∂, ∀t ≥ τ∂ almost surely.

Example : Process evolving in E = [0,+∞[, with absorption at ∂= 0

4 / 20



Formal defintion

Let (Xt)t∈[0,+∞[ evolving E ∪ {∂}, where ∂ ∉ E is absorbing.

Denoting by τ∂ = inf{t ≥ 0, Xt = ∂} the hitting time of ∂,

Xt = ∂, ∀t ≥ τ∂ almost surely.

Example : Process evolving in E = [0,+∞[, with absorption at ∂= 0

4 / 20



Formal defintion

Let (Xt)t∈[0,+∞[ evolving E ∪ {∂}, where ∂ ∉ E is absorbing.

Denoting by τ∂ = inf{t ≥ 0, Xt = ∂} the hitting time of ∂,

Xt = ∂, ∀t ≥ τ∂ almost surely.

Example : Process evolving in E = [0,+∞[, with absorption at ∂= 0

4 / 20



Formal defintion

Let (Xt)t∈[0,+∞[ evolving E ∪ {∂}, where ∂ ∉ E is absorbing.

Denoting by τ∂ = inf{t ≥ 0, Xt = ∂} the hitting time of ∂,

Xt = ∂, ∀t ≥ τ∂ almost surely.

Example : Process evolving in E = [0,+∞[, with absorption at ∂= 0

4 / 20



Formal defintion

Let (Xt)t∈[0,+∞[ evolving E ∪ {∂}, where ∂ ∉ E is absorbing.

Denoting by τ∂ = inf{t ≥ 0, Xt = ∂} the hitting time of ∂,

Xt = ∂, ∀t ≥ τ∂ almost surely.

Example : Process evolving in E = [0,+∞[, with absorption at ∂= 0

4 / 20



Formal defintion

Let (Xt)t∈[0,+∞[ evolving E ∪ {∂}, where ∂ ∉ E is absorbing.

Denoting by τ∂ = inf{t ≥ 0, Xt = ∂} the hitting time of ∂,

Xt = ∂, ∀t ≥ τ∂ almost surely.

Example : Process evolving in E = [0,+∞[, with absorption at ∂= 0

4 / 20



Limiting behaviour

In many interesting cases,

Px0 (Xt ∈ ·) −−−→
t→∞ δ∂, ∀x0 ∈ E ∪ {∂}.

Question : What about the distribution of the process conditioned
not to be absorbed, namely Px0 (Xt ∈ · | t < τ∂) ?
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Wright-Fisher model of genetical evolution

Discrete time/space. Let X , evolving in E ∪∂= {0,1, . . . ,N}, denotes
the number of individuals with allele A in a population of size
N ≥ 2. Assume that the transition probabilities of X are given by

P(i,j) = N !

j!(N − j)!

(
i

N

)j (
1− i

N

)N−j

.

∂= {0,N} : allele A either disappears or invades the population.

Continuous time/space. Let X , evolving in E ∪∂= (0,1), denotes
the proportion of individuals with allele A. Assume that

dXt =
√

Xt(1−Xt)dBt , with B a Brownian motion.

∂= {0,1} : allele A either disappears or invades the population.
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Penalized semi-groups

Consider a process X evolving in a state space E and add the
following mechanism

(killing) with rate κk(Xt) ≥ 0, the particle is sent to a cemetary
point ∂ ∉ E and remains there,

(branching) with rate κb(Xt) ≥ 0, the process branches into
two independent particles that follow the same dynamic as X
(with killing and branching).

Then, denoting by Nt ≥ 0 the number of particles at time t and by
X i the ith particle, one has

E

(
Nt∑

i=1
f (X i

t )

)
= E

(
e
∫ t

0 κb(Xs)−κk(Xs)ds f (Xt)
)

.

Multiplying this term by e−t‖κb‖∞ , one recovers the dynamic of a
system with killing only, which fits into the settings of absorbed
Markov processes.
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2. Quasi-stationary distributions
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Definition

A quasi-stationary distribution (QSD) is a probability measure α
on E such that

α= lim
t→∞Pµ (Xt ∈ ·|t < τ∂)

for some initial probability measure µ on E.

Proposition

A probability measure α is a QSD if and only if, for any t ≥ 0,

α=Pα(Xt ∈ .|t < τ∂).

→ Surveys and book

Méléard, V. 2012, Van Doorn, Pollett 2013
Collet, Mart́ınez, San Mart́ın 2013
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Proposition (Absorption rate admits a limit)

Ifα= limt→∞Pµ(Xt ∈ · | t < τ∂), then there exists λ0 > 0 such that

absorbtion rate(t)
def= P∂µ(τ∂ ∈]t,t +1]|τ∂ > t) −−−→

t→∞ e−λ0 .
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absorbtion rate(t)
def= P∂µ(τ∂ ∈]t,t +1]|τ∂ > t) −−−→

t→∞ e−λ0 .

Brownian motion on E =]0,1[ absorbed at ∂= {0,1}.
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Proposition (Absorption rate admits a limit)

Ifα= limt→∞Pµ(Xt ∈ · | t < τ∂), then there exists λ0 > 0 such that

absorbtion rate(t)
def= P∂µ(τ∂ ∈]t,t +1]|τ∂ > t) −−−→

t→∞ e−λ0 .

Slowing of Mortality Rates at Older Ages In Large Medfly Cohorts (1992)

Carey et al.

See also Steinsaltz & Wachter 2006
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Définition

Let α be a QSD. The domain of attraction of α is the set of initial
distributions µ such that

lim
t→∞Pµ(Xt ∈ .|t < τ∂) =α.

In the general case :

Existence of a QSD is not true

Existence does not imply uniqueness of a QSD

Uniqueness does not imply attraction of all initial
distributions

Attraction of all initial distributions does not imply uniform
convergence

Question : how to guarantee some or all of the above properties ?
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3. Uniqueness of QSDs and exponential convergence
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Probabilistic approach

Let X evolving in E ∪ {∂} absorbed at ∂.

→ Assumption A1 (Doeblin condition)
There exists a probability measure ν and c1 > 0 such that

Px(X1 ∈ ·|1 < τ∂) ≥ c1ν(·), ∀x ∈ E.

→ Assumption A2 (Harnack inequality)

Pν(t < τ∂)

Px(t < τ∂)
> c2 > 0, ∀x ∈ E,t ≥ 0.

Theorem (Champagnat, V. 2016)

A1 and A2 ⇔ there exists C > 0, γ> 0 and α ∈M 1(E) such that,
for all µ ∈M1(E),∥∥Pµ(Xt ∈ ·|t < τ∂)−α∥∥

TV ≤ Ce−γt .
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Comments and examples

A1 and A2 have been used in several situations
· general one dimensional diffusion processes
· multi-dimensional diffusion processes (with K. Coulibaly-P)
· birth and death processes with catastrophes
· multi-dimensional birth and death processes
· branching/dying Brownian motions
· time-inhomogeneous processes
· Benäım, Cloez, Panloup 2016, Chazotte, Collet, Méléard 2017

A1 and A2 also imply several interesting properties
· Spectral properties of the infinitesimal generator
· Uniform convergence of eλ0tPx(t < τ∂) toward an eigenfunction
· Existence and exponential ergodicity of the Q-process

Intrinsec limitations
· Uniform convergence and uniqueness of QSD
=⇒ compact state spaces or entrance boundary at infinity

or regularity of the boundaries
· Not suited for the study of classical models (linear BD,

Orstein-Uhlenbeck, AR-1, Galton-Watson, etc...)
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5. A (far) more general criterion for the study of quasi-stationarity
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A first model : perturbed dynamical systems

Let E be a measurable set of Rd with positive Lebesgue measure
and let ∂ 6∈ E. Assume that

Xn+1 =
{

f (Xn)+ξn if Xn 6= ∂ and f (Xn)+ξn ∈ E,

∂ otherwise,

where f :Rd →Rd is measurable and (ξn)n∈N is an i.i.d.
non-degenerate Gaussian sequence in Rd.

Theorem (Champagnat, V. 2018)

If f is locally bounded such that

|x|− |f (x)| −−−−−→
|x|→+∞

+∞,

then there exists a quasi-stationary distribution attracting all initial
distributions on E admitting an exponential moment.

16 / 20



A second model : diffusion processes

We consider a diffusion process X evolving in a bounded open
domain E ⊂Rd and absorbed at the boundary ∂E, solution to the
SDE

dXt =σ(Xt)dBt +b(Xt)dt, X0 ∈ E,

where σ and b are Hölder and uniformly elliptic.

Theorem (Champagnat, V. 2018)

There exists a unique quasi-stationary distribution.

As a corollary, we obtain the existence of a unique positive function
η with C2 regularity such that

−λ0
σσ∗

2
∆η+b ·∇η

for some λ0 > 0, without any regularity condition on ∂E.
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where σ and b are Hölder and uniformly elliptic.

Theorem (Champagnat, V. 2018)

There exists a unique quasi-stationary distribution.

As a corollary, we obtain the existence of a unique positive function
η with C2 regularity such that

−λ0
σσ∗

2
∆η+b ·∇η

for some λ0 > 0, without any regularity condition on ∂E.
17 / 20



Main ingredients

Common properties for these irreducible processes are that

A1-A2 is satisfied locally

there exist ϕ1 : E → [1,+∞) and ϕ2 : E → [0,1] such that

Ex(ϕ1(X1)11<τ∂) ≤ θ1ϕ1(x)+Cst and Ex(ϕ2(X1)11<τ∂) ≥ θ2ϕ2(x)

with 0 < θ1 < θ2, ϕ1 locally bounded and ϕ2 locally positive.

−→ these are the two main ingredients of our general criterion

Remark that, using Markov’s property recursively, one obtains

E(ϕ1(Xn) | n < τ∂)) ≤ Ex(ϕ1(Xn)1n<τ∂)

Ex(ϕ2(Xn)1n<τ∂)
≤

(
θnϕ1(x)

ϕ2(x)

)
∨Cθ, ∀θ ∈ (θ1/θ2,1)

Hence, if ϕ1(x) →+∞ at infinity, then the sequence
(Px(Xn ∈ · | n < τ∂))n≥0 is relatively compact and hence there exist
limit distributions.
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Application : convergence of a reinforced algorithm

Consider the process (Yt)t≥0 in Rd evolving as follows :

→ Y evolves following the SDE

dYt = dBt +b(Xt)dt, Y0 ∈Rd (1)

→ and, with rate κ(Yt) ≥ 1, the process jumps with respect to its
empirical occupation measure 1

t

∫ t
0 δYs ds.

Theorem (Champagnat, V. 2018 ; Mailler, V. 2018)

Assume that limsupx→+∞
〈b(x),x〉

|x| <−3
2‖κ‖

1/2∞. Then

the solution to (1) admits a unique QSD νQSD with an
exponential moment of order ‖κ‖1/2∞
almost surely,

1

t

∫ t

0
δYs ds

weak−−−−→
t→+∞ νQSD.
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