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Poisson driven SDEs

Consider the following SDE

ZN
t = xN +

1
N

k∑
j=1

hjPj

(
N

∫ t

0
βj(Z

N
s )ds

)
,

where each of the d coordinates of ZN
t takes its values in the set

{k/N, k ∈ Z+}, provided the same is true with xN and the
coordinates of each vector hj are either −1, 0 or 1. The Pj are i.i.d.
standard Poisson processes. For 1 ≤ j ≤ k , βj is locally Lipschitz from
Rd
+ into R+.

The above SDE can be equivalently rewritten as

ZN
t = xN +

k∑
j=1

hj

∫ t

0

∫ Nβj (Z
N
s−)

0
Qj(ds, du),

where the Qj are i.i.d. Poisson random measures on R2
+, with mean

measure ds du.
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Law of large numbers

The following law of large numbers is essentially well–known
(Kurtz’78), at least if the βj are locally Lipschitz, which we do
assume : ZN

t → zt a. s. locally uniformly in t as N →∞, where

żt = b(zt), z0 = lim xN ,

if b(z) =
∑k

j=1 βj(z)hj .
We are interested in situations where this ODE has a locally stable
equilibrium, and we will exploit large deviations and the
Wentzell–Freidlin theory, in order to describe the time it takes for the
random perturbations inherent in the ZN

t SDE to drive the system out
of the basin of attraction of an equilibrium of the ODE.
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Examples of epidemics models 1

The SIS model. If xt denotes the proportion of infectious, and yt the
proportion of susceptible individuals in a population of constant size,
where an individual is either infectious or susceptible (no immunity
upon recovery). The law of large numbers ODE reads

ẋx = λxt(1− xt)− γxt ,

where λ is the rate of infection and γ the recovery rate. If
R0 = λ/γ > 1, x∗ = (λ− γ)/λ is the stable endemic equilibrium.
The SIRS model. In this model, when an individual looses its
infection, he becomes “recovered” and immune, but he losses his
immunity at rate ρ. The ODE model reads

ẋt = λxtyt − γxt ,
ẏt = −λxtyt + ρ(1− xt − yt).

Again if R0 > 1, z∗ =
(
ρ
λ
λ−γ
ρ+γ ,

γ
λ

)
is the stable endemic equilibrium,

while the disease free equilibrium (0, 1) is unstable.
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Examples of epidemics models 2

The SIR model with demography. In this model, there is no loss of
immunity, but there is an influx of susceptibles by births (or possibly
immigration) at rate µ. We also assume that each individual, whether
infectious, susceptible or removed, dies at rate µ. The ODE of this
model reads

ẋt = λxtyt − (γ + µ)xt ,

ẏt = −λxtyt + µ− µyt .

Here R0 = λ/(γ + µ). If R0 > 1, there is a stable endemic equilibrium,
which is ( µ

γ+µ(1−
γ+µ
λ ), γ+µλ ).
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Examples of epidemics models 3

The S0IS1 model of Safan, Heesterbeek and Dietz’06 (sort of
intermediate between SIS and SIRS)

ẋt = −µxt + λ(1− xt − yt)xt + rλ− γxt + rλztxt ,

ẏt = −µyt + γxt − rλxtyt .

For certain values of the parameters, there is one locally stable
endemic equilibrium, another one locally unstable, and a locally stable
disease free equilibrium.
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Large Deviations : the rate function

We go back to the Poissonian SDE (xN is the vector whose i–th
coordinate reads [Nxi ]/N, is x is the starting point of the ODE)

ZN
t = xN +

1
N

k∑
j=1

hjPj

(
N

∫ t

0
βj(Z

N
s )ds

)
.

Let ACT ,d denote the set of absolutely continuous functions from
[0,T ] into Rd . If φ ∈ ACT ,d , we let Aφ denote the (possibly empty)
set of c ∈ L1([0,T ];Rk

+) with φ̇t =
∑k

j=1 cj(t)hj . We define the rate
function

IT (φ) :=

{
infc∈Ak (φ) IT (φ|c), if φ ∈ ACT ,d ;
∞, otherwise,

and with g(a, b) = a log(a/b)− a+ b,

IT (φ|c) =
∫ T

0

k∑
j=1

g(cj(t), βj(φt))dt

with g(ν, ω) = ν log(ν/ω)− ν + ω.Etienne Pardoux (Aix–Marseille Univ.) Sylvie Méléard’s 60th birthday 7 / 19
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The rate function 2

Another formula for the rate function is

IT (φ) = sup
θ∈C1([0,T ];Rd )

∫ T

0
`(φt , φ̇t , θt)dt ,

where

`(x , y , θ) = 〈y , θ〉 −
k∑

j=1

βj(x)
(
e〈hj ,θ〉 − 1

)
.

One can show that the two formulas define the same function, and
that IT is a good rate function on D([0,T ];Rd). Note that IT (φ) ≥ 0,
and IT (φ) = 0 iff φ solves the ODE. IT can be thought of as the cost
of energy needed for diverting φ from solving the ODE.
Large deviations. Proof of the lower bound based on a quasi–continuity
result similar to Azencott’78, Priouret’82, and needs an assumption
due to the fact that the βj ’s may vanish. The upper bound for
compact sets needs no specific assumption, while some restriction on
the growth of the βj ’s is needed for the exponential tightness.
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Quasi–continuity 1

Let for 1 ≤ j ≤ k QN
j (ds, du) = N−1Qj(ds,Ndu). The SDE can be

rewritten as

ZN
t = xN +

k∑
j=1

hj

∫ t

0

∫ βj (Z
N
s−)

0
QN

j (ds, du).

Let φ ∈ ACT ,d s.t. Kφ = infc∈Ak (φ)

∑k
j=1
∫ T
0

cj (t)
βj (φt)

dt <∞. The
associate to φ the measures ηj(ds, du) with the density

fj(s, u) =
cj(s)

βj(φs)
1[0,βj (φs)](u) + 1(βj (φs),+∞)(u).

Then, with x = φ0, φt solves the ODE

φt = x +
k∑

j=1

hj

∫ t

0

∫ βj (φs)

0
ηj(ds, du).

Define Aφ,L = {(t, x), 0 ≤ t ≤ T , |x − φt | ≤ L+ 1},
β(φ, L) = sup1≤j≤k sup(t,x)∈Aφ,L βj(t, x).
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Quasi–continuity 2

We have the

Proposition
Let T > 0 be arbitrary. Given (φ, η) as above, such that in particular
Kφ <∞, if xN = ZN

0 , for any R , L > 0, there exists δ > 0 (depending
upon Kφ) and N0 such that whenever N ≥ N0,

P
(
‖ZN − φ‖T > L, dT ,β(Q

N , η) ≤ δ
)
≤ e−NR ,

where

dT ,β(ν, η) =
k∑

j=1

sup
0≤t≤T , 0≤u≤β

|νj([0, t]× [0, u])− ηj([0, t]× [0, u])|.

and β := β(φ, L).
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Lower Bound

Assume
(A.1) For any φ ∈ C ([0,T ];Rd) such that IT (φ) <∞
and any ε > 0, there exists φε such that φε0 = φ0,
Kφε <∞, ‖φ− φε‖T ≤ ε and IT (φ

ε) ≤ IT (φ) + ε.
We have

Theorem
If the assumptions (A.1) is satisfied, then for any open subset
O ⊂ D([0,T ];Rd),

lim inf
N→∞

1
N

logP
(
ZN ∈ O

)
≥ −IT (O).

The proof combines the previous Proposition with Cramér’s theorem
for the Poisson distribution.
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Upper Bound for compact sets

Without any further assumptions besides the locally Lipschitz property of
te βj ’, we can prove

Theorem
Let T > 0 be fixed. For any compact set K ⊂ D([0,T ];Rd),

lim sup
N→∞

1
N

logP
(
ZN ∈ K

)
≤ −IT (K ) .

The proof exploits the second formula for the rate function and the
supermartingale property of certain exponentials.
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Exponential tightness

It remains to show that for any α > 0, there exists a compact set
Kα ⊂⊂ D([0,T ];Rd

+) such that

lim sup
N→∞

N−1 logP(ZN 6∈ Kα) ≤ −α.

In order to establish that property, we need some growth restriction on
the βj ’s. The standard condition would be a sub–linear growth
condition. This is not well adapted to the models we have in mind.
We prove exponential tightness under the condition :

(A.2) We assume that for all starting points xN ∈ Zd
+/N,

ZN takes its values in Rd
+ a.s., and moreover that there

exists Cβ > 0 such that for any j such that 〈hj ,1〉 6= 0,
βj(t, x) ≤ Cβ(1+ |x |), 0 ≤ t ≤ T , x ∈ Rd .

A consequence of the above statements is that under both (A.1) and
(A.2), the sequence {ZN}N≥1 satisfies the Large Deviation principle.

Etienne Pardoux (Aix–Marseille Univ.) Sylvie Méléard’s 60th birthday 13 / 19



Exponential tightness

It remains to show that for any α > 0, there exists a compact set
Kα ⊂⊂ D([0,T ];Rd

+) such that

lim sup
N→∞

N−1 logP(ZN 6∈ Kα) ≤ −α.

In order to establish that property, we need some growth restriction on
the βj ’s. The standard condition would be a sub–linear growth
condition. This is not well adapted to the models we have in mind.
We prove exponential tightness under the condition :

(A.2) We assume that for all starting points xN ∈ Zd
+/N,

ZN takes its values in Rd
+ a.s., and moreover that there

exists Cβ > 0 such that for any j such that 〈hj ,1〉 6= 0,
βj(t, x) ≤ Cβ(1+ |x |), 0 ≤ t ≤ T , x ∈ Rd .

A consequence of the above statements is that under both (A.1) and
(A.2), the sequence {ZN}N≥1 satisfies the Large Deviation principle.

Etienne Pardoux (Aix–Marseille Univ.) Sylvie Méléard’s 60th birthday 13 / 19



Exponential tightness

It remains to show that for any α > 0, there exists a compact set
Kα ⊂⊂ D([0,T ];Rd

+) such that

lim sup
N→∞

N−1 logP(ZN 6∈ Kα) ≤ −α.

In order to establish that property, we need some growth restriction on
the βj ’s. The standard condition would be a sub–linear growth
condition. This is not well adapted to the models we have in mind.
We prove exponential tightness under the condition :

(A.2) We assume that for all starting points xN ∈ Zd
+/N,

ZN takes its values in Rd
+ a.s., and moreover that there

exists Cβ > 0 such that for any j such that 〈hj ,1〉 6= 0,
βj(t, x) ≤ Cβ(1+ |x |), 0 ≤ t ≤ T , x ∈ Rd .

A consequence of the above statements is that under both (A.1) and
(A.2), the sequence {ZN}N≥1 satisfies the Large Deviation principle.

Etienne Pardoux (Aix–Marseille Univ.) Sylvie Méléard’s 60th birthday 13 / 19



Exponential tightness

It remains to show that for any α > 0, there exists a compact set
Kα ⊂⊂ D([0,T ];Rd

+) such that

lim sup
N→∞

N−1 logP(ZN 6∈ Kα) ≤ −α.

In order to establish that property, we need some growth restriction on
the βj ’s. The standard condition would be a sub–linear growth
condition. This is not well adapted to the models we have in mind.
We prove exponential tightness under the condition :

(A.2) We assume that for all starting points xN ∈ Zd
+/N,

ZN takes its values in Rd
+ a.s., and moreover that there

exists Cβ > 0 such that for any j such that 〈hj ,1〉 6= 0,
βj(t, x) ≤ Cβ(1+ |x |), 0 ≤ t ≤ T , x ∈ Rd .

A consequence of the above statements is that under both (A.1) and
(A.2), the sequence {ZN}N≥1 satisfies the Large Deviation principle.

Etienne Pardoux (Aix–Marseille Univ.) Sylvie Méléard’s 60th birthday 13 / 19



Time of extinction of an endemic disease

Let TN
0 = inf{t > 0, ZN

t ∈ ∂O}, where ∂O is the boundary of the
basin of attraction of the endemic equil. z∗. In the three first
examples, TN

0 = inf{t > 0, ZN
1 (t) = 0}, where

ZN
1 (t) = N−1 ×# of infectious individuals at time t.

Define

V (z , z ′) = inf
T>0

inf
φ0=z,φT=z ′

IT (φ),

V = inf
z∈∂O

V (z∗, z).

We have

Theorem
Given η > 0, for all z ∈ A,

lim
N→∞

P
(
exp{N(V − η)} < TN

0 < exp{N(V + η)}
)
= 1.

∀η > 0, and N large enough, exp{N(V − η)} ≤ E(TN
0 ) ≤ exp{N(V + η)}.
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The value of V

V is the value function of an optimal control problem. In the case of
the SIS model, thanks to one dimensionality, one can exploit the
Pontryagin maximum principle, and obtain the explicit formula :
V = log(λ/γ), so that TN

0 ∼ (λ/γ)N .
In all other above examples, it looks like there is no explicit formula
for V . Of course, one can use numerical methods to compute their
values for various sets of parameters.
In the SIRS model, if we vary from λ = 1.5, γ = 1 and ρ = 0.25 to
λ = 20, γ = 15, ρ = 25, then V varies from 8× 10−3 to 4× 10−5.
In the S0IS1 model with λ = 3, γ = 5, µ = 0.015 and r = 2, we get
V = 0.01. This gives eNV taking values from 2.7 to astronomical
values. But with λ = 28, γ = 10, µ = 20 and r = 12, V = 0.004. For
other values of the parameters, eNV ' 1 even for N = 106.
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for V . Of course, one can use numerical methods to compute their
values for various sets of parameters.
In the SIRS model, if we vary from λ = 1.5, γ = 1 and ρ = 0.25 to
λ = 20, γ = 15, ρ = 25, then V varies from 8× 10−3 to 4× 10−5.
In the S0IS1 model with λ = 3, γ = 5, µ = 0.015 and r = 2, we get
V = 0.01. This gives eNV taking values from 2.7 to astronomical
values. But with λ = 28, γ = 10, µ = 20 and r = 12, V = 0.004. For
other values of the parameters, eNV ' 1 even for N = 106.
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Exit point 1

Wentzell–Freidlin’s theory tells us also what is the most probable part
of the boundary which the process hits for large N. More precisely,
suppose that there exists a unique point z̃ ∈ ∂O such that
V (z∗, z̃) = V , so that V (z∗, z) > V , for all z ∈ ∂O\{z̃}, and in the
non–compact case there exists a compact K 3 z̃ and c > 0 such that
V (z∗, z) ≥ V + c for z ∈ ∂O ∩ K c . Under those assumptions, for any
δ > 0,

lim
N→∞

P(‖ZN
TN

0
− z̃‖ < δ) = 1.

In the four examples above, there is one special point on ∂O, let us
call it z̃ , which is the stable equilibrium of the ODE when restricted to
the boundary. It is obvious that V (z∗, z̃) = V , but it is not obvious
that this is the unique minimum.
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Exit point 2

However, in all four above examples, one can show that z̃ is the
unique minimum. The sketch of the argument is as follows.
If there exists an optimal trajectory going from z∗ to some
z ∈ ∂O\{z̃} in finite time, then concatenating that trajectory with the
solution of the ODE starting from z , we would have an optimal
trajectory for the control problem with the same cost functional, but
with the constraints φ0 = z∗, φT = z̃ .
From the Pontryagin maximum principle, there would exist a
continuous adjoint state, which is zero along the solution of the ODE,
so would be zero when reaching z . But in each example one can show
that this is impossible.
So an optimal trajectory could reach the boundary at z ∈ ∂O\{z̃}
only in infinite time. But in infinite time, an optimal trajectory reaches
the boundary necessarily at z̃ (this uses again the Pontryagin
maximum principle).
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HAPPY BIRTHDAY SYLVIE !
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